Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danielle M. Weiner is active.

Publication


Featured researches published by Danielle M. Weiner.


Analytical Chemistry | 2011

High-sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in tuberculosis-infected rabbit lungs and granulomatous lesions.

Brendan Prideaux; Véronique Dartois; Dieter Staab; Danielle M. Weiner; Anne Goh; Laura E. Via; Clifton E. Barry; Markus Stoeckli

MALDI-MSI is a powerful technology for localizing drug and metabolite distributions in biological tissues. To enhance our understanding of tuberculosis (TB) drug efficacy and how efficiently certain drugs reach their site of action, MALDI-MSI was applied to image the distribution of the second-line TB drug moxifloxacin at a range of time points after dosing. The ability to perform multiple monitoring of selected ion transitions in the same experiment enabled extremely sensitive imaging of moxifloxacin within tuberculosis-infected rabbit lung biopsies in less than 15 min per tissue section. Homogeneous application of a reference standard during the matrix spraying process enabled the ion-suppressing effects of the inhomogeneous lung tissue to be normalized. The drug was observed to accumulate in granulomatous lesions at levels higher than that in the surrounding lung tissue from 1.5 h postdose until the final time point. MALDI-MSI moxifloxacin distribution data were validated by quantitative LC/MS/MS analysis of lung and granuloma extracts from adjacent biopsies taken from the same animals. Drug distribution within the granulomas was observed to be inhomogeneous, and very low levels were observed in the caseum in comparison to the cellular granuloma regions. In this experiment the MALDI-MRM-MSI method was shown to be a rapid and sensitive method for analyzing the distribution of anti-TB compounds and will be applied to distribution studies of additional drugs in the future.


Nature Medicine | 2015

The association between sterilizing activity and drug distribution into tuberculosis lesions.

Brendan Prideaux; Laura E. Via; Matthew Zimmerman; Seok-Yong Eum; Jansy Sarathy; Paul O'Brien; Chao Chen; Firat Kaya; Danielle M. Weiner; Pei Yu Chen; Taeksun Song; Myungsun Lee; Tae Sun Shim; Jeong Su Cho; Wooshik Kim; Sang-Nae Cho; Kenneth N. Olivier; Clifton E. Barry; Véronique Dartois

Finding new treatment-shortening antibiotics to improve cure rates and curb the alarming emergence of drug resistance is the major objective of tuberculosis (TB) drug development. Using a matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging suite in a biosafety containment facility, we show that the key sterilizing drugs rifampicin and pyrazinamide efficiently penetrate the sites of TB infection in lung lesions. Rifampicin even accumulates in necrotic caseum, a critical lesion site where persisting tubercle bacilli reside. In contrast, moxifloxacin, which is active in vitro against a subpopulation of Mycobacterium tuberculosis that persists in specific niches under drug pressure and has achieved treatment shortening in mice, does not diffuse well in caseum, concordant with its failure to shorten therapy in recent clinical trials. We suggest that such differential spatial distribution and kinetics of accumulation in lesions may create temporal and spatial windows of monotherapy in specific niches, allowing the gradual development of multidrug-resistant TB. We propose an alternative working model to prioritize new antibiotic regimens based on quantitative and spatial distribution of TB drugs in the major lesion types found in human lungs. The finding that lesion penetration may contribute to treatment outcome has wide implications for TB.


Antimicrobial Agents and Chemotherapy | 2012

Pharmacokinetic Evaluation of the Penetration of Antituberculosis Agents in Rabbit Pulmonary Lesions

Maria C. Kjellsson; Laura E. Via; Anne Goh; Danielle M. Weiner; Kang Min Low; Steven Kern; Goonaseelan Pillai; Clifton E. Barry; Véronique Dartois

ABSTRACT Standard antituberculosis (anti-TB) therapy requires the use of multiple drugs for a minimum of 6 months, with variable outcomes that are influenced by a number of microbiological, pathological, and clinical factors. This is despite the availability of antibiotics that have good activity against Mycobacterium tuberculosis in vitro and favorable pharmacokinetic profiles in plasma. However, little is known about the distribution of widely used antituberculous agents in the pulmonary lesions where the pathogen resides. The rabbit model of TB infection was used to explore the hypothesis that standard drugs have various abilities to penetrate lung tissue and lesions and that adequate drug levels are not consistently reached at the site of infection. Using noncompartmental and population pharmacokinetic approaches, we modeled the rate and extent of distribution of isoniazid, rifampin, pyrazinamide, and moxifloxacin in rabbit lung and lesions. Moxifloxacin reproducibly showed favorable partitioning into lung and granulomas, while the exposure of isoniazid, rifampin, and pyrazinamide in lesions was markedly lower than in plasma. The extent of penetration in lung and lesions followed different trends for each drug. All four agents distributed rapidly from plasma to tissue with equilibration half-lives of less than 1 min to an hour. The models adequately described the plasma concentrations and reasonably captured actual lesion concentrations. Though further refinement is needed to accurately predict the behavior of these drugs in human subjects, our results enable the integration of lesion-specific pharmacokinetic-pharmacodynamic (PK-PD) indices in clinical trial simulations and in in vitro PK-PD studies with M. tuberculosis.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery

Meenal Datta; Laura E. Via; Walid S. Kamoun; Chong Liu; Wei Chen; Giorgio Seano; Danielle M. Weiner; Daniel Schimel; Kathleen England; John D. Martin; Xing Gao; Lei Xu; Clifton E. Barry; Rakesh K. Jain

Significance Tuberculosis (TB) is the second most lethal pathogen worldwide. Pulmonary granulomas are a hallmark of this disease. By discovering similarities between granulomas and solid cancerous tumors, we identified a novel therapeutic target for TB, the abnormal granuloma-associated vasculature that contributes to the abnormal granuloma microenvironment. We then asked if we could “normalize” granuloma vasculature by blocking VEGF signaling, an approach originally shown to enhance cancer treatment. Our results demonstrate that bevacizumab, a widely prescribed anti-VEGF antibody for cancer and eye diseases, is able to create more structurally and functionally normal granuloma vasculature and improve the delivery of a low-molecular-weight tracer. This effect suggests that vascular normalization in combination with anti-TB drugs has the potential to enhance treatment in patients with TB. Tuberculosis (TB) causes almost 2 million deaths annually, and an increasing number of patients are resistant to existing therapies. Patients who have TB require lengthy chemotherapy, possibly because of poor penetration of antibiotics into granulomas where the bacilli reside. Granulomas are morphologically similar to solid cancerous tumors in that they contain hypoxic microenvironments and can be highly fibrotic. Here, we show that TB-infected rabbits have impaired small molecule distribution into these disease sites due to a functionally abnormal vasculature, with a low-molecular-weight tracer accumulating only in peripheral regions of granulomatous lesions. Granuloma-associated vessels are morphologically and spatially heterogeneous, with poor vessel pericyte coverage in both human and experimental rabbit TB granulomas. Moreover, we found enhanced VEGF expression in both species. In tumors, antiangiogenic, specifically anti-VEGF, treatments can “normalize” their vasculature, reducing hypoxia and creating a window of opportunity for concurrent chemotherapy; thus, we investigated vessel normalization in rabbit TB granulomas. Treatment of TB-infected rabbits with the anti-VEGF antibody bevacizumab significantly decreased the total number of vessels while normalizing those vessels that remained. As a result, hypoxic fractions of these granulomas were reduced and small molecule tracer delivery was increased. These findings demonstrate that bevacizumab treatment promotes vascular normalization, improves small molecule delivery, and decreases hypoxia in TB granulomas, thereby providing a potential avenue to improve delivery and efficacy of current treatment regimens.


Infection and Immunity | 2013

Differential Virulence and Disease Progression following Mycobacterium tuberculosis Complex Infection of the Common Marmoset (Callithrix jacchus)

Laura E. Via; Danielle M. Weiner; Daniel Schimel; Philana Ling Lin; Emmanuel Dayao; Sarah L. Tankersley; Ying Cai; M. Teresa Coleman; Jaime Tomko; Praveen Paripati; Marlene Orandle; Robin J. Kastenmayer; Michael Tartakovsky; Alexander Rosenthal; Damien Portevin; Seok Yong Eum; Saher Lahouar; Sebastien Gagneux; Douglas B. Young; JoAnne L. Flynn; Clifton E. Barry

ABSTRACT Existing small-animal models of tuberculosis (TB) rarely develop cavitary disease, limiting their value for assessing the biology and dynamics of this highly important feature of human disease. To develop a smaller primate model with pathology similar to that seen in humans, we experimentally infected the common marmoset (Callithrix jacchus) with diverse strains of Mycobacterium tuberculosis of various pathogenic potentials. These included recent isolates of the modern Beijing lineage, the Euro-American X lineage, and M. africanum. All three strains produced fulminant disease in this animal with a spectrum of progression rates and clinical sequelae that could be monitored in real time using 2-deoxy-2-[18F]fluoro-d-glucose (FDG) positron emission tomography (PET)/computed tomography (CT). Lesion pathology at sacrifice revealed the entire spectrum of lesions observed in human TB patients. The three strains produced different rates of progression to disease, various extents of extrapulmonary dissemination, and various degrees of cavitation. The majority of live births in this species are twins, and comparison of results from siblings with different infecting strains allowed us to establish that the infection was highly reproducible and that the differential virulence of strains was not simply host variation. Quantitative assessment of disease burden by FDG-PET/CT provided an accurate reflection of the pathology findings at necropsy. These results suggest that the marmoset offers an attractive small-animal model of human disease that recapitulates both the complex pathology and spectrum of disease observed in humans infected with various M. tuberculosis strain clades.


Antimicrobial Agents and Chemotherapy | 2012

Meropenem-Clavulanic Acid Shows Activity against Mycobacterium tuberculosis In Vivo

Kathleen England; Helena I. Boshoff; Kriti Arora; Danielle M. Weiner; Emmanuel Dayao; Daniel Schimel; Laura E. Via; Clifton E. Barry

ABSTRACT The carbapenems imipenem and meropenem in combination with clavulanic acid reduced the bacterial burden in Mycobacterium tuberculosis-infected macrophages by 2 logs over 6 days. Despite poor stability in solution and a short half-life in rodents, treatment of chronically infected mice revealed significant reductions of bacterial burden in the lungs and spleens. Our results show that meropenem has activity in two in vivo systems, but stability and pharmacokinetics of long-term administration will offer significant challenges to clinical evaluation.


Antimicrobial Agents and Chemotherapy | 2012

Infection Dynamics and Response to Chemotherapy in a Rabbit Model of Tuberculosis using [18F]2-Fluoro-Deoxy-d-Glucose Positron Emission Tomography and Computed Tomography

Laura E. Via; Dan Schimel; Danielle M. Weiner; Véronique Dartois; Emmanuel Dayao; Ying Cai; Young-Soon Yoon; Matthew R. Dreher; Robin J. Kastenmayer; Charles M. Laymon; J. Eoin Carny; JoAnne L. Flynn; Peter Herscovitch; Clifton E. Barry

ABSTRACT With a host of new antitubercular chemotherapeutics in development, methods to assess the activity of these agents beyond mouse efficacy are needed to prioritize combinations for clinical trials. Lesions in Mycobacterium tuberculosis-infected rabbits are hypoxic, with histopathologic features that closely resemble those of human tuberculous lesions. Using [18F]2-fluoro-deoxy-d-glucose ([18F]FDG) positron emission tomography–computed tomography (PET-CT) imaging, we studied the dynamics of tuberculosis infection in rabbits, revealing an initial inflammatory response followed by a consolidative chronic disease. Five weeks after infection, as much as 23% of total lung volume was abnormal, but this was contained and to some extent reversed naturally by 9 weeks. During development of this chronic state, individual lesions in the same animal had very different fates, ranging from complete resolution to significant progression. Lesions that remained through the initial stage showed an increase in volume and tissue density over time by CT. Initiation of chemotherapy using either isoniazid (INH) or rifampin (RIF) during chronic infection reduced bacterial load with quantitative changes in [18F]FDG uptake, lesion density and total lesion volume measured by CT. The [18F]FDG PET uptake in lesions was significantly reduced with as little as 1 week of treatment, while the volume and density of lesions changed more slowly. The results from this study suggest that rabbits may be a useful surrogate species for evaluating novel chemotherapies and understanding changes in both PET and CT scans in human clinical trials.


Antimicrobial Agents and Chemotherapy | 2015

A Sterilizing Tuberculosis Treatment Regimen Is Associated with Faster Clearance of Bacteria in Cavitary Lesions in Marmosets

Laura E. Via; Kathleen England; Danielle M. Weiner; Daniel Schimel; Matthew Zimmerman; Emmanuel Dayao; Ray Y. Chen; Lori E. Dodd; Mike Richardson; Katherine K. Robbins; Ying Cai; Dima A. Hammoud; Peter Herscovitch; Véronique Dartois; JoAnne L. Flynn; Clifton E. Barry

ABSTRACT Shortening the lengthy treatment duration for tuberculosis patients is a major goal of current drug development efforts. The common marmoset develops human-like disease pathology and offers an attractive model to better understand the basis for relapse and test regimens for effective shorter duration therapy. We treated Mycobacterium tuberculosis-infected marmosets with two drug regimens known to differ in their relapse rates in human clinical trials: the standard four-drug combination of isoniazid, rifampin, pyrazinamide, and ethambutol (HRZE) that has very low relapse rates and the combination of isoniazid and streptomycin that is associated with higher relapse rates. As early as 2 weeks, the more sterilizing regimen significantly reduced the volume of lung disease by computed tomography (P = 0.035) and also significantly reduced uptake of [18F]-2-fluoro-2-deoxyglucose by positron emission tomography (P = 0.049). After 6 weeks of therapy, both treatments caused similar reductions in granuloma bacterial load, but the more sterilizing, four-drug regimen caused greater reduction in bacterial load in cavitary lesions (P = 0.009). These findings, combined with the association in humans between cavitary disease and relapse, suggest that the basis for improved sterilizing activity of the four-drug combination is both its faster disease volume resolution and its stronger sterilizing effect on cavitary lesions. Definitive data from relapse experiments are needed to support this observation.


Antimicrobial Agents and Chemotherapy | 2017

Extreme drug tolerance ofMycobacterium tuberculosisin caseum

Jansy Sarathy; Laura E. Via; Danielle M. Weiner; Landry Blanc; Helena I. Boshoff; Eliseo A. Eugenin; Clifton E. Barry; Véronique Dartois

ABSTRACT Tuberculosis (TB) recently became the leading infectious cause of death in adults, while attempts to shorten therapy have largely failed. Dormancy, persistence, and drug tolerance are among the factors driving the long therapy duration. Assays to measure in situ drug susceptibility of Mycobacterium tuberculosis bacteria in pulmonary lesions are needed if we are to discover new fast-acting regimens and address the global TB threat. Here we take a first step toward this goal and describe an ex vivo assay developed to measure the cidal activity of anti-TB drugs against M. tuberculosis bacilli present in cavity caseum obtained from rabbits with active TB. We show that caseum M. tuberculosis bacilli are largely nonreplicating, maintain viability over the course of the assay, and exhibit extreme tolerance to many first- and second-line TB drugs. Among the drugs tested, only the rifamycins fully sterilized caseum. A similar trend of phenotypic drug resistance was observed in the hypoxia- and starvation-induced nonreplicating models, but with notable qualitative and quantitative differences: (i) caseum M. tuberculosis exhibits higher drug tolerance than nonreplicating M. tuberculosis in the Wayne and Loebel models, and (ii) pyrazinamide is cidal in caseum but has no detectable activity in these classic nonreplicating assays. Thus, ex vivo caseum constitutes a unique tool to evaluate drug potency against slowly replicating or nonreplicating bacilli in their native caseous environment. Intracaseum cidal concentrations can now be related to the concentrations achieved in the necrotic foci of granulomas and cavities to establish correlations between clinical outcome and lesion-centered pharmacokinetics-pharmacodynamics (PK-PD) parameters.


Journal of Visualized Experiments | 2017

An In Vitro Caseum Binding Assay that Predicts Drug Penetration in Tuberculosis Lesions

Jansy Sarathy; Hsin-pin Ho Liang; Danielle M. Weiner; Jacqueline Gonzales; Laura E. Via; Véronique Dartois

The eradication of tuberculosis disease requires drug regimens that can penetrate the multiple layers of complex pulmonary lesions. Drug distribution in the caseous cores of cavities and lesions is especially crucial because they harbor subpopulations of drug-tolerant bacteria also commonly referred to as persisters. Existing methods for the measurement of drug penetration in tuberculosis lesions involve costly and time-consuming in vivo pharmacokinetic studies coupled to bioanalytical or imaging techniques. The in vitro measurement of drug binding to caseum macromolecules was proposed as an alternative to such techniques since this binding hinders the passive diffusion of drug molecules through caseum. Rapid equilibrium dialysis is a fast and reliable system for performing plasma protein and tissue binding studies. In this protocol, we used a rapid equilibrium dialysis (RED) device to measure drug binding to homogenates of caseum that is excised from the lesions and cavities of tuberculosis-infected rabbits. The protocol also describes how to generate a surrogate matrix from lipid loaded THP-1 macrophages to use in place of caseum. This caseum/surrogate binding assay is an important tool in tuberculosis drug discovery and can be adapted to help study drug distribution in lesions or abscesses caused by other diseases.

Collaboration


Dive into the Danielle M. Weiner's collaboration.

Top Co-Authors

Avatar

Laura E. Via

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Clifton E. Barry

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Schimel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Emmanuel Dayao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Helena I. Boshoff

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen England

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge