Danilo Pecorino
University of Otago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Danilo Pecorino.
PLOS ONE | 2013
Sven Uthicke; Danilo Pecorino; Rebecca Albright; Andrew P. Negri; Neal E. Cantin; Michelle Liddy; Symon A. Dworjanyn; Pamela Z. Kamya; Maria Byrne; Miles D. Lamare
Coral reefs are marine biodiversity hotspots, but their existence is threatened by global change and local pressures such as land-runoff and overfishing. Population explosions of coral-eating crown of thorns sea stars (COTS) are a major contributor to recent decline in coral cover on the Great Barrier Reef. Here, we investigate how projected near-future ocean acidification (OA) conditions can affect early life history stages of COTS, by investigating important milestones including sperm motility, fertilisation rates, and larval development and settlement. OA (increased pCO2 to 900–1200 µatm pCO2) significantly reduced sperm motility and, to a lesser extent, velocity, which strongly reduced fertilization rates at environmentally relevant sperm concentrations. Normal development of 10 d old larvae was significantly lower under elevated pCO2 but larval size was not significantly different between treatments. Settlement of COTS larvae was significantly reduced on crustose coralline algae (known settlement inducers of COTS) that had been exposed to OA conditions for 85 d prior to settlement assays. Effect size analyses illustrated that reduced settlement may be the largest bottleneck for overall juvenile production. Results indicate that reductions in fertilisation and settlement success alone would reduce COTS population replenishment by over 50%. However, it is unlikely that this effect is sufficient to provide respite for corals from other negative anthropogenic impacts and direct stress from OA and warming on corals.
Marine and Freshwater Research | 2012
Danilo Pecorino; Miles D. Lamare; Mike F. Barker
The sea urchin Centrostephanus rodgersii has increased its range in Eastern Australia resulting in important ecological changes. C. rodgersii may also have expanded its distribution range to northern New Zealand in the last five to six decades, although little is known about this process and of the biology of the species in New Zealand. We investigated morphometrics as well as growth using two techniques (growth line count in genital plates and tag–recapture using the fluorescent marker tetracycline). These methods allowed modelling of size at age of C. rodgersii in New Zealand, which we compared with populations recently established in Tasmania. The modelled growth rate was only slightly higher in the New Zealand population, and no differences in morphometrics were observed. The New Zealand population structure suggests that annual recruitment occurs regularly, with the population including a range of ages (3 to 10+ years).
Harmful Algae | 2016
Valentina Giussani; Elisa Costa; Danilo Pecorino; Elisa Berdalet; Giulio De Giampaulis; Miriam Gentile; Veronica Fuentes; Magda Vila; Antonella Penna; Mariachiara Chiantore; Francesca Garaventa; Silvia Lavorano; Marco Faimali
The frequency and geographic extension of microalgae and gelatinous zooplankton blooms seem to have been increasing worldwide over recent decades. In particular, the harmful dinoflagellate Ostreopsis cf. ovata and the Schyphozoan jellyfish Aurelia sp. are two of the most frequent and long lasting species forming blooms in the Mediterranean Sea. A kind of interaction among any of their life cycle stages (i.e. planula-polyp-ephyrae vs Ostreopsis cells) can likely occur, although in this area there are no data available on the co-occurrence of these species. The aim of this study was to investigate, for the first time, the potential noxious effect of O. cf. ovata on different life stages of Aurelia sp. (polyps and ephyrae), testing several concentrations of whole algal culture. Rsults of toxicity bioassay highlighted that ephyrae, but not polyps, are affected by this harmful dinoflagellate and comparisons among other model organisms show that Aurelia sp. ephyrae are the most sensitive model organism tested so far (EC50-24h=10.5cells/mL). These findings suggest an interesting scenario on the interaction of these two bloom forming species in the natural marine environment.
Harmful Algae | 2017
Valentina Asnaghi; Danilo Pecorino; Ennio Ottaviani; Andrea Pedroncini; Rosa Maria Bertolotto; Mariachiara Chiantore
Harmful algal blooms have been increasing in frequency in recent years, and attention has shifted from describing to modeling and trying to predict these phenomena, since in many cases they pose a risk to human health and coastal activities. Predicting ecological phenomena is often time and resource consuming, since a large number of field collected data are required. We propose a novel approach that involves the use of modeled meteorological data as input features to predict the concentration of the toxic benthic dinoflagellate Ostreopsis cf. ovata in seawater. Ten meteorological features were used to train a Quantile Random Forests model, which was then validated using field collected concentration data over the course of a summer sampling season. The proposed model was able to accurately describe Ostreopsis abundance in the water column in response to meteorological variables. Furthermore, the predictive power of this model appears good, as indicated by the validation results, especially when the quantile for predictions is tuned to match management requirements. The Quantile Random Forests method was selected, as it allows for greater flexibility in the generated predictions, thus making this model suitable as a tool for coastal management. The application of this approach is novel, as no other models or tools that are adaptable to this degree are currently available. The model presented here was developed for a single species over a limited geographical extension, but its methodological basis appears flexible enough to be applied to the prediction of HABs in general and it could also be extended to the case of other ecological phenomena that are strongly dependent on meteorological drivers, that can be independently modeled and potentially globally available.
International Journal of Life Cycle Assessment | 2018
Angelica Mendoza Beltran; Mariachiara Chiantore; Danilo Pecorino; Richard Corner; J.G. Ferreira; Roberto Cò; Luca Fanciulli; Jeroen B. Guinée
PurposeIntegrated multi-trophic aquaculture (IMTA), growing different species in the same space, is a technology that may help manage the environmental impacts of coastal aquaculture. Nutrient discharges to seawater from monoculture aquaculture are conceptually minimized in IMTA, while expanding the farm economic base. In this study, we investigate the environmental trade-offs for a small-to-medium enterprise (SME) considering a shift from monoculture towards IMTA production of marine fish.MethodsA comparative life cycle assessment (LCA), including uncertainty analysis, was implemented for an aquaculture SME in Italy. Quantification and simultaneous propagation of uncertainty of inventory data and uncertainty due to the choice of allocation method were combined with dependent sampling to account for relative uncertainties and statistical testing and interpretation to understand the uncertainty analysis results. Monte Carlo simulations were used as a propagation method. The environmental impacts per kilo of fish produced in monoculture and in IMTA were compared. Twelve impact categories were considered. The comparison is first made excluding uncertainty (deterministic LCA) and then accounting for uncertainties.Results and discussionDeterministic LCA results evidence marginal differences between the impacts of IMTA and monoculture fish production. IMTA performs better on all impacts studied. However, statistical testing and interpretation of the uncertainty analysis results showed that only mean impacts for climate change are significantly different for both productive systems, favoring IMTA. For the case study, technical variables such as scales of production of the species from different trophic levels, their integration (space and time), and the choice of species determine the trade-offs. Also, LCA methodological choices such as that for an allocation method and the treatment of relative uncertainties were determinant in the comparison of environmental trade-offs.ConclusionsThe case study showed that environmental trade-offs between monoculture and IMTA fish production depend on technical variables and methodological choices. The combination of statistical methods to quantify, propagate, and interpret uncertainty was successfully tested. This approach supports more robust environmental trade-off assessments between alternatives in LCAs with uncertainty analysis by adding information on the significance of results. It was difficult to establish whether IMTA does bring benefits given the scales of production in the case study. We recommend that the methodology defined here is applied to fully industrialized IMTA systems or bay-scale environments, to provide more robust conclusions about the environmental benefits of this aquaculture type in Europe.
Coral Reefs | 2014
Miles D. Lamare; Danilo Pecorino; Natasha Hardy; M. Liddy; Maria Byrne; Sven Uthicke
Journal of Experimental Marine Biology and Ecology | 2013
Danilo Pecorino; Miles D. Lamare; Mike F. Barker; Maria Byrne
Marine Biology | 2014
Danilo Pecorino; Mike F. Barker; Symon A. Dworjanyn; Maria Byrne; Miles D. Lamare
Marine Biology Research | 2013
Danilo Pecorino; Miles D. Lamare; Mike F. Barker
Global Change Biology | 2017
Sam Karelitz; Sven Uthicke; Shawna A. Foo; Mike F. Barker; Maria Byrne; Danilo Pecorino; Miles D. Lamare