Danilo Pellin
Vita-Salute San Raffaele University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Danilo Pellin.
Blood | 2010
Claudia Cattoglio; Danilo Pellin; Ermanno Rizzi; Giulietta Maruggi; Giorgio Corti; Francesca Miselli; Daniela Sartori; Alessandro Guffanti; Clelia Di Serio; Alessandro Ambrosi; Gianluca De Bellis; Fulvio Mavilio
Integration of retroviral vectors in the human genome follows nonrandom patterns that favor insertional deregulation of gene expression and increase the risk of their use in clinical gene therapy. The molecular basis of retroviral target site selection is still poorly understood. We used deep sequencing technology to build genomewide, high-definition maps of > 60 000 integration sites of Moloney murine leukemia virus (MLV)- and HIV-based retroviral vectors in the genome of human CD34(+) multipotent hematopoietic progenitor cells (HPCs) and used gene expression profiling, chromatin immunoprecipitation, and bioinformatics to associate integration to genetic and epigenetic features of the HPC genome. Clusters of recurrent MLV integrations identify regulatory elements (alternative promoters, enhancers, evolutionarily conserved noncoding regions) within or around protein-coding genes and microRNAs with crucial functions in HPC growth and differentiation, bearing epigenetic marks of active or poised transcription (H3K4me1, H3K4me2, H3K4me3, H3K9Ac, Pol II) and specialized chromatin configurations (H2A.Z). Overall, we mapped 3500 high-frequency integration clusters, which represent a new resource for the identification of transcriptionally active regulatory elements. High-definition MLV integration maps provide a rational basis for predicting genotoxic risks in gene therapy and a new tool for genomewide identification of promoters and regulatory elements controlling hematopoietic stem and progenitor cell functions.
Embo Molecular Medicine | 2011
Luca Biasco; Alessandro Ambrosi; Danilo Pellin; Cynthia C. Bartholomae; Immacolata Brigida; Maria Grazia Roncarolo; Clelia Di Serio; Christof von Kalle; Manfred Schmidt; Alessandro Aiuti
The analysis of genomic distribution of retroviral vectors is a powerful tool to monitor ‘vector‐on‐host’ effects in gene therapy (GT) trials but also provides crucial information about ‘host‐on‐vector’ influences based on the target cell genetic and epigenetic state. We had the unique occasion to compare the insertional profile of the same therapeutic moloney murine leukemia virus (MLV) vector in the context of the adenosine deaminase‐severe combined immunodeficiency (ADA‐SCID) genetic background in two GT trials based on infusions of transduced mature lymphocytes (peripheral blood lymphocytes, PBL) or a single infusion of haematopoietic stem/progenitor cells (HSC). We found that vector insertions are cell‐specific according to the differential expression profile of target cells, favouring, in PBL‐GT, genes involved in immune system and T‐cell functions/pathways as well as T‐cell DNase hypersensitive sites, differently from HSC‐GT. Chromatin conformations and histone modifications influenced integration preferences but we discovered that only H3K27me3 was cell‐specifically disfavoured, thus representing a key epigenetic determinant of cell‐type dependent insertion distribution. Our study shows that MLV vector insertional profile is cell‐specific according to the genetic/chromatin state of the target cell both in vitro and in vivo in patients several years after GT.
Nature Communications | 2015
Mickaël Lelek; Nicoletta Casartelli; Danilo Pellin; Ermanno Rizzi; Philippe Souque; Marco Severgnini; Clelia Di Serio; Thomas Fricke; Felipe Diaz-Griffero; Christophe Zimmer; Pierre Charneau; Francesca Di Nunzio
The molecular mechanisms that allow HIV to integrate into particular sites of the host genome are poorly understood. Here we tested if the nuclear pore complex (NPC) facilitates the targeting of HIV integration by acting on chromatin topology. We show that the integrity of the nuclear side of the NPC, which is mainly composed of Tpr, is not required for HIV nuclear import, but that Nup153 is essential. Depletion of Tpr markedly reduces HIV infectivity, but not the level of integration. HIV integration sites in Tpr-depleted cells are less associated with marks of active genes, consistent with the state of chromatin proximal to the NPC, as analysed by super-resolution microscopy. LEDGF/p75, which promotes viral integration into active genes, stabilizes Tpr at the nuclear periphery and vice versa. Our data support a model in which HIV nuclear import and integration are concerted steps, and where Tpr maintains a chromatin environment favourable for HIV replication.
PLOS ONE | 2014
Rossella Baldan; Cristina Cigana; Francesca Testa; Irene Bianconi; Maura De Simone; Danilo Pellin; Clelia Di Serio; Alessandra Bragonzi; Daniela M. Cirillo
Cystic fibrosis (CF) airways disease represents an example of polymicrobial infection whereby different bacterial species can interact and influence each other. In CF patients Staphylococcus aureus is often the initial pathogen colonizing the lungs during childhood, while Pseudomonas aeruginosa is the predominant pathogen isolated in adolescents and adults. During chronic infection, P. aeruginosa undergoes adaptation to cope with antimicrobial therapy, host response and co-infecting pathogens. However, S. aureus and P. aeruginosa often co-exist in the same niche influencing the CF pathogenesis. The goal of this study was to investigate the reciprocal interaction of P. aeruginosa and S. aureus and understand the influence of P. aeruginosa adaptation to the CF lung in order to gain important insight on the interplay occurring between the two main pathogens of CF airways, which is still largely unknown. P. aeruginosa reference strains and eight lineages of clinical strains, including early and late clonal isolates from different patients with CF, were tested for growth inhibition of S. aureus. Next, P. aeruginosa/S. aureus competition was investigated in planktonic co-culture, biofilm, and mouse pneumonia model. P. aeruginosa reference and early strains, isolated at the onset of chronic infection, outcompeted S. aureus in vitro and in vivo models of co-infection. On the contrary, our results indicated a reduced capacity to outcompete S. aureus of P. aeruginosa patho-adaptive strains, isolated after several years of chronic infection and carrying several phenotypic changes temporally associated with CF lung adaptation. Our findings provide relevant information with respect to interspecies interaction and disease progression in CF.
PLOS ONE | 2012
Paolo Miotto; Francesca Forti; Alessandro Ambrosi; Danilo Pellin; Diogo F. Veiga; Gábor Balázsi; Maria L. Gennaro; Clelia Di Serio; Daniela Ghisotti; Daniela M. Cirillo
Only few small RNAs (sRNAs) have been characterized in Mycobacterium tuberculosis and their role in regulatory networks is still poorly understood. Here we report a genome-wide characterization of sRNAs in M. tuberculosis integrating experimental and computational analyses. Global RNA-seq analysis of exponentially growing cultures of M. tuberculosis H37Rv had previously identified 1373 sRNA species. In the present report we show that 258 (19%) of these were also identified by microarray expression. This set included 22 intergenic sRNAs, 84 sRNAs mapping within 5′/3′ UTRs, and 152 antisense sRNAs. Analysis of promoter and terminator consensus sequences identified sigma A promoter consensus sequences for 121 sRNAs (47%), terminator consensus motifs for 22 sRNAs (8.5%), and both motifs for 35 sRNAs (14%). Additionally, 20/23 candidates were visualized by Northern blot analysis and 5′ end mapping by primer extension confirmed the RNA-seq data. We also used a computational approach utilizing functional enrichment to identify the pathways targeted by sRNA regulation. We found that antisense sRNAs preferentially regulated transcription of membrane-bound proteins. Genes putatively regulated by novel cis-encoded sRNAs were enriched for two-component systems and for functional pathways involved in hydrogen transport on the membrane.
PLOS ONE | 2010
Claudia Cattoglio; Giulietta Maruggi; Cynthia C. Bartholomae; Nirav Malani; Danilo Pellin; Zulma Magnani; Fabio Ciceri; Alessandro Ambrosi; Christof von Kalle; Frederic D. Bushman; Chiara Bonini; Manfred Schmidt; Fulvio Mavilio
The infusion of donor lymphocytes transduced with a retroviral vector expressing the HSV-TK suicide gene in patients undergoing hematopoietic stem cell transplantation for leukemia/lymphoma promotes immune reconstitution and prevents infections and graft-versus-host disease. Analysis of the clonal dynamics of genetically modified lymphocytes in vivo is of crucial importance to understand the potential genotoxic risk of this therapeutic approach. We used linear amplification-mediated PCR and pyrosequencing to build a genome-wide, high-definition map of retroviral integration sites in the genome of peripheral blood T cells from two different donors and used gene expression profiling and bioinformatics to associate integration clusters to transcriptional activity and to genetic and epigenetic features of the T cell genome. Comparison with matched random controls and with integrations obtained from CD34+ hematopoietic stem/progenitor cells showed that integration clusters occur within chromatin regions bearing epigenetic marks associated with active promoters and regulatory elements in a cell-specific fashion. Analysis of integration sites in T cells obtained ex vivo two months after infusion showed no evidence of integration-related clonal expansion or dominance, but rather loss of cells harboring integration events interfering with RNA post-transcriptional processing. The study shows that high-definition maps of retroviral integration sites are a powerful tool to analyze the fate of genetically modified T cells in patients and the biological consequences of retroviral transduction.
PLOS ONE | 2012
Danilo Pellin; Paolo Miotto; Alessandro Ambrosi; Daniela M. Cirillo; Clelia Di Serio
We propose a new method for smallRNAs (sRNAs) identification. First we build an effective target genome (ETG) by means of a strand-specific procedure. Then we propose a new bioinformatic pipeline based mainly on the combination of two types of information: the first provides an expression map based on RNA-seq data (Reads Map) and the second applies principles of comparative genomics leading to a Conservation Map. By superimposing these two maps, a robust method for the search of sRNAs is obtained. We apply this methodology to investigate sRNAs in Mycobacterium tuberculosis H37Rv. This bioinformatic procedure leads to a total list of 1948 candidate sRNAs. The size of the candidate list is strictly related to the aim of the study and to the technology used during the verification process. We provide performance measures of the algorithm in identifying annotated sRNAs reported in three recent published studies.
PLOS Computational Biology | 2011
Alessandro Ambrosi; Ingrid K. Glad; Danilo Pellin; Claudia Cattoglio; Fulvio Mavilio; Clelia Di Serio; Arnoldo Frigessi
Integration of retroviral vectors in the human genome follows non random patterns that favor insertional deregulation of gene expression and may cause risks of insertional mutagenesis when used in clinical gene therapy. Understanding how viral vectors integrate into the human genome is a key issue in predicting these risks. We provide a new statistical method to compare retroviral integration patterns. We identified the positions where vectors derived from the Human Immunodeficiency Virus (HIV) and the Moloney Murine Leukemia Virus (MLV) show different integration behaviors in human hematopoietic progenitor cells. Non-parametric density estimation was used to identify candidate comparative hotspots, which were then tested and ranked. We found 100 significative comparative hotspots, distributed throughout the chromosomes. HIV hotspots were wider and contained more genes than MLV ones. A Gene Ontology analysis of HIV targets showed enrichment of genes involved in antigen processing and presentation, reflecting the high HIV integration frequency observed at the MHC locus on chromosome 6. Four histone modifications/variants had a different mean density in comparative hotspots (H2AZ, H3K4me1, H3K4me3, H3K9me1), while gene expression within the comparative hotspots did not differ from background. These findings suggest the existence of epigenetic or nuclear three-dimensional topology contexts guiding retroviral integration to specific chromosome areas.
PLOS ONE | 2013
Arianna Moiani; Annarita Miccio; Ermanno Rizzi; Marco Severgnini; Danilo Pellin; Julia D. Suerth; Christopher Baum; Gianluca De Bellis; Fulvio Mavilio
Moloney murine leukemia virus (MLV)-derived gamma-retroviral vectors integrate preferentially near transcriptional regulatory regions in the human genome, and are associated with a significant risk of insertional gene deregulation. Self-inactivating (SIN) vectors carry a deletion of the U3 enhancer and promoter in the long terminal repeat (LTR), and show reduced genotoxicity in pre-clinical assays. We report a high-definition analysis of the integration preferences of a SIN MLV vector compared to a wild-type-LTR MLV vector in the genome of CD34+ human hematopoietic stem/progenitor cells (HSPCs). We sequenced 13,011 unique SIN-MLV integration sites and compared them to 32,574 previously generated MLV sites in human HSPCs. The SIN-MLV vector recapitulates the integration pattern observed for MLV, with the characteristic clustering of integrations around enhancer and promoter regions associated to H3K4me3 and H3K4me1 histone modifications, specialized chromatin configurations (presence of the H2A.Z histone variant) and binding of RNA Pol II. SIN-MLV and MLV integration clusters and hot spots overlap in most cases and are generated at a comparable frequency, indicating that the reduced genotoxicity of SIN-MLV vectors in hematopoietic cells is not due to a modified integration profile.
Molecular Therapy | 2016
Lorena Leonardelli; Danilo Pellin; Serena Scala; Francesca Dionisio; Luca Basso Ricci; Davide Cittaro; Clelia Di Serio; Alessandro Aiuti; Luca Biasco
Gene-corrected cells in Gene Therapy (GT) treated patients can be tracked in vivo by means of vector integration site (IS) analysis, since each engineered clone becomes univocally and stably marked by an individual IS. As the proper IS identification and quantification is crucial to accurately perform clonal tracking studies, we designed a customizable and tailored pipeline to analyze LAM-PCR amplicons sequenced by Illumina MiSeq/HiSeq technology. The sequencing data are initially processed through a series of quality filters and cleaned from vector and Linker Cassette (LC) sequences with customizable settings. Demultiplexing is then performed according to the recognition of specific barcodes combination used upon library preparation and the sequences are aligned to the reference genome. Importantly, the human genome assembly Hg19 is composed of 93 contigs, among which the mitochondrial genome, unlocalized and unplaced contigs and some alternative haplotypes of chr6. While previous approaches aligned IS sequences only to the standard 24 human chromosomes, using the whole assembled genome allowed improving alignment accuracy and concomitantly increased the amount of detectable ISs. To date, we have processed 28 independent human sample sets retrieving 260,994 ISs from 189,270,566 sequencing reads. Although, sequencing read counts at each IS have been widely used to estimate the relative IS abundance, this method carries inherent accuracy constraints due to the rounds of exponential amplification required by LAM-PCR that might generate unbalances on the original clonal representation. More recently, a method based on genomic sonication has been proposed exploiting shear site counts to tag the number of original fragments belonging to each IS before PCR amplification. However, the number of cells composing a given clone could far exceed the number of fragments of different lengths that can be generated upon fragmentation in proximity of that given IS. This would rapidly saturate the available diversity of shear sites and progressively generate more and more same-site shearing on independent genomes. In order to overcome the described biases and reliably quantify ISs, we designed and tested a new LC encoding random barcodes. The new LC is composed of a known sequence of 29nt used as binding site for the primers upon amplification steps, a 6nt-random barcode, a fixed-anchor sequence of 6nt, a second 6nt-random barcode and a final known sequence of 22nt containing sticky ends for the three main restriction enzymes in use (MluI, HpyCH4IV and AciI). This peculiar design allowed increasing the accuracy of clonal diversity estimation since the fixed-anchor sequence acts as a control for sequencing reliability in the barcode area. The theoretical number of different available barcodes per clone (412=16,777,216) far exceeds the requirements for not saturating the original diversity of the analyzed sample (on average composed by around 50.000 cells). We validated this novel approach by performing assays on serial dilutions of individual clones carrying known ISs. The precision rate obtained was averagely around 99.3%, while the worst error rate reaches at most the 1.86%, confirming the reliability of IS quantification. We successfully applied the barcoded-LC system to the analysis of clinical samples from a Wiskott Aldrich Syndrome GT patient, collecting to date 50,215 barcoded ISs from 94,052,785 sequencing reads.