Danish Saleheen
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Danish Saleheen.
Nature | 2016
Monkol Lek; Konrad J. Karczewski; Eric Vallabh Minikel; Kaitlin E. Samocha; Eric Banks; Timothy Fennell; Anne H. O’Donnell-Luria; James S. Ware; Andrew Hill; Beryl B. Cummings; Taru Tukiainen; Daniel P. Birnbaum; Jack A. Kosmicki; Laramie Duncan; Karol Estrada; Fengmei Zhao; James Zou; Emma Pierce-Hoffman; Joanne Berghout; David Neil Cooper; Nicole Deflaux; Mark A. DePristo; Ron Do; Jason Flannick; Menachem Fromer; Laura Gauthier; Jackie Goldstein; Namrata Gupta; Daniel P. Howrigan; Adam Kiezun
Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human ‘knockout’ variants in protein-coding genes.
JAMA | 2008
Alexander Thompson; Emanuele Di Angelantonio; Nadeem Sarwar; Sebhat Erqou; Danish Saleheen; Robin P. F. Dullaart; Bernard Keavney; Zheng Ye; John Danesh
CONTEXT The importance of the cholesteryl ester transfer protein (CETP) pathway in coronary disease is uncertain. Study of CETP genotypes can help better understand the relevance of this pathway to lipid metabolism and disease risk. OBJECTIVE To assess associations of CETP genotypes with CETP phenotypes, lipid levels, and coronary risk. DATA SOURCES Studies published between January 1970 and January 2008 were identified through computer-based and manual searches using MEDLINE, EMBASE, BIOSIS, Science Citation Index, and the Chinese National Knowledge Infrastructure Database. Previously unreported studies were sought through correspondence with investigators. STUDY SELECTION Relevant studies related principally to 3 common (TaqIB [rs708272], I405V [rs5882], and -629C>A [rs1800775]) and 3 uncommon (D442G [rs2303790], -631C>A [rs1800776], and R451Q [rs1800777]) CETP polymorphisms. DATA EXTRACTION Information on CETP genotypes, CETP phenotypes, lipid levels, coronary disease, and study characteristics was abstracted from publications, supplied by investigators, or both. RESULTS Ninety-two studies had data on CETP phenotypes, lipid levels, or both in 113,833 healthy participants, and 46 studies had data on 27,196 coronary cases and 55,338 controls. For each A allele inherited, individuals with the TaqIB polymorphism had lower mean CETP mass (-9.7%; 95% confidence interval [CI], -11.7% to -7.8%), lower mean CETP activity (-8.6%; 95% CI, -13.0% to -4.1%), higher mean high-density lipoprotein cholesterol (HDL-C) concentrations (4.5%; 95% CI, 3.8%-5.2%), and higher mean apolipoprotein A-I concentrations (2.4%; 95% CI, 1.6%-3.2%). The pattern of findings was very similar with the I405V and -629C>A polymorphisms. The combined per-allele odds ratios (ORs) for coronary disease were 0.95 (95% CI, 0.92-0.99) for TaqIB, 0.94 (95% CI, 0.89-1.00) for I405V, and 0.95 (95% CI, 0.91-1.00) for -629C>A. CONCLUSIONS Three CETP genotypes that are associated with moderate inhibition of CETP activity (and, therefore, modestly higher HDL-C levels) show weakly inverse associations with coronary risk. The ORs for coronary disease were compatible with the expected reductions in risk for equivalent increases in HDL-C concentration in available prospective studies.
The Lancet | 2010
Nadeem Sarwar; Manjinder S. Sandhu; Sally L. Ricketts; Adam S. Butterworth; E Di Angelantonio; S. M. Boekholdt; Willem H. Ouwehand; Hugh Watkins; Nilesh J. Samani; Danish Saleheen; Debbie A. Lawlor; Muredach P. Reilly; Aroon D. Hingorani; P.J. Talmud; John Danesh
Summary Background Whether triglyceride-mediated pathways are causally relevant to coronary heart disease is uncertain. We studied a genetic variant that regulates triglyceride concentration to help judge likelihood of causality. Methods We assessed the −1131T>C (rs662799) promoter polymorphism of the apolipoprotein A5 (APOA5) gene in relation to triglyceride concentration, several other risk factors, and risk of coronary heart disease. We compared disease risk for genetically-raised triglyceride concentration (20 842 patients with coronary heart disease, 35 206 controls) with that recorded for equivalent differences in circulating triglyceride concentration in prospective studies (302 430 participants with no history of cardiovascular disease; 12 785 incident cases of coronary heart disease during 2·79 million person-years at risk). We analysed −1131T>C in 1795 people without a history of cardiovascular disease who had information about lipoprotein concentration and diameter obtained by nuclear magnetic resonance spectroscopy. Findings The minor allele frequency of −1131T>C was 8% (95% CI 7–9). −1131T>C was not significantly associated with several non-lipid risk factors or LDL cholesterol, and it was modestly associated with lower HDL cholesterol (mean difference per C allele 3·5% [95% CI 2·6–4·6]; 0·053 mmol/L [0·039–0·068]), lower apolipoprotein AI (1·3% [0·3–2·3]; 0·023 g/L [0·005–0·041]), and higher apolipoprotein B (3·2% [1·3–5·1]; 0·027 g/L [0·011–0·043]). By contrast, for every C allele inherited, mean triglyceride concentration was 16·0% (95% CI 12·9–18·7), or 0·25 mmol/L (0·20–0·29), higher (p=4·4×10−24). The odds ratio for coronary heart disease was 1·18 (95% CI 1·11–1·26; p=2·6×10−7) per C allele, which was concordant with the hazard ratio of 1·10 (95% CI 1·08–1·12) per 16% higher triglyceride concentration recorded in prospective studies. −1131T>C was significantly associated with higher VLDL particle concentration (mean difference per C allele 12·2 nmol/L [95% CI 7·7–16·7]; p=9·3×10−8) and smaller HDL particle size (0·14 nm [0·08–0·20]; p=7·0×10−5), factors that could mediate the effects of triglyceride. Interpretation These data are consistent with a causal association between triglyceride-mediated pathways and coronary heart disease. Funding British Heart Foundation, UK Medical Research Council, Novartis.
Nature Genetics | 2011
Jaspal S. Kooner; Danish Saleheen; Xueling Sim; Joban Sehmi; Weihua Zhang; Philippe Frossard; Latonya F. Been; Kee Seng Chia; Antigone S. Dimas; Neelam Hassanali; Tazeen H. Jafar; Jeremy B. M. Jowett; Xinzhong Li; Venkatesan Radha; Simon D. Rees; Fumihiko Takeuchi; Robin Young; Tin Aung; Abdul Basit; Manickam Chidambaram; Debashish Das; Elin Grundberg; Åsa K. Hedman; Zafar I. Hydrie; Muhammed Islam; Chiea Chuen Khor; Sudhir Kowlessur; Malene M. Kristensen; Samuel Liju; Wei-Yen Lim
We carried out a genome-wide association study of type-2 diabetes (T2D) in individuals of South Asian ancestry. Our discovery set included 5,561 individuals with T2D (cases) and 14,458 controls drawn from studies in London, Pakistan and Singapore. We identified 20 independent SNPs associated with T2D at P < 10−4 for testing in a replication sample of 13,170 cases and 25,398 controls, also all of South Asian ancestry. In the combined analysis, we identified common genetic variants at six loci (GRB14, ST6GAL1, VPS26A, HMG20A, AP3S2 and HNF4A) newly associated with T2D (P = 4.1 × 10−8 to P = 1.9 × 10−11). SNPs at GRB14 were also associated with insulin sensitivity (P = 5.0 × 10−4), and SNPs at ST6GAL1 and HNF4A were also associated with pancreatic beta-cell function (P = 0.02 and P = 0.001, respectively). Our findings provide additional insight into mechanisms underlying T2D and show the potential for new discovery from genetic association studies in South Asians, a population with increased susceptibility to T2D.
PubMed | 2010
Nadeem Sarwar; Manjinder S. Sandhu; Sally L. Ricketts; Adam S Butterworth; E Di Angelantonio; S. M. Boekholdt; Willem H. Ouwehand; Hugh Watkins; Nilesh J. Samani; Danish Saleheen; Debbie A. Lawlor; M. P. Reilly; Aroon D. Hingorani; P.J. Talmud; John Danesh
Summary Background Whether triglyceride-mediated pathways are causally relevant to coronary heart disease is uncertain. We studied a genetic variant that regulates triglyceride concentration to help judge likelihood of causality. Methods We assessed the −1131T>C (rs662799) promoter polymorphism of the apolipoprotein A5 (APOA5) gene in relation to triglyceride concentration, several other risk factors, and risk of coronary heart disease. We compared disease risk for genetically-raised triglyceride concentration (20 842 patients with coronary heart disease, 35 206 controls) with that recorded for equivalent differences in circulating triglyceride concentration in prospective studies (302 430 participants with no history of cardiovascular disease; 12 785 incident cases of coronary heart disease during 2·79 million person-years at risk). We analysed −1131T>C in 1795 people without a history of cardiovascular disease who had information about lipoprotein concentration and diameter obtained by nuclear magnetic resonance spectroscopy. Findings The minor allele frequency of −1131T>C was 8% (95% CI 7–9). −1131T>C was not significantly associated with several non-lipid risk factors or LDL cholesterol, and it was modestly associated with lower HDL cholesterol (mean difference per C allele 3·5% [95% CI 2·6–4·6]; 0·053 mmol/L [0·039–0·068]), lower apolipoprotein AI (1·3% [0·3–2·3]; 0·023 g/L [0·005–0·041]), and higher apolipoprotein B (3·2% [1·3–5·1]; 0·027 g/L [0·011–0·043]). By contrast, for every C allele inherited, mean triglyceride concentration was 16·0% (95% CI 12·9–18·7), or 0·25 mmol/L (0·20–0·29), higher (p=4·4×10−24). The odds ratio for coronary heart disease was 1·18 (95% CI 1·11–1·26; p=2·6×10−7) per C allele, which was concordant with the hazard ratio of 1·10 (95% CI 1·08–1·12) per 16% higher triglyceride concentration recorded in prospective studies. −1131T>C was significantly associated with higher VLDL particle concentration (mean difference per C allele 12·2 nmol/L [95% CI 7·7–16·7]; p=9·3×10−8) and smaller HDL particle size (0·14 nm [0·08–0·20]; p=7·0×10−5), factors that could mediate the effects of triglyceride. Interpretation These data are consistent with a causal association between triglyceride-mediated pathways and coronary heart disease. Funding British Heart Foundation, UK Medical Research Council, Novartis.
The Lancet | 2012
Nadeem Sarwar; Adam S. Butterworth; Daniel F. Freitag; John Gregson; Peter Willeit; Donal N. Gorman; Pei Gao; Danish Saleheen; Augusto Rendon; Christopher P. Nelson; Peter S. Braund; Alistair S. Hall; Daniel I. Chasman; Anne Tybjærg-Hansen; John Chambers; Emelia J. Benjamin; Paul W. Franks; Robert Clarke; Arthur A. M. Wilde; Mieke D. Trip; Maristella Steri; Jacqueline C. M. Witteman; Lu Qi; C. Ellen van der Schoot; Ulf de Faire; Jeanette Erdmann; H. M. Stringham; Wolfgang Koenig; Daniel J. Rader; David Melzer
Summary Background Persistent inflammation has been proposed to contribute to various stages in the pathogenesis of cardiovascular disease. Interleukin-6 receptor (IL6R) signalling propagates downstream inflammation cascades. To assess whether this pathway is causally relevant to coronary heart disease, we studied a functional genetic variant known to affect IL6R signalling. Methods In a collaborative meta-analysis, we studied Asp358Ala (rs2228145) in IL6R in relation to a panel of conventional risk factors and inflammation biomarkers in 125 222 participants. We also compared the frequency of Asp358Ala in 51 441 patients with coronary heart disease and in 136 226 controls. To gain insight into possible mechanisms, we assessed Asp358Ala in relation to localised gene expression and to postlipopolysaccharide stimulation of interleukin 6. Findings The minor allele frequency of Asp358Ala was 39%. Asp358Ala was not associated with lipid concentrations, blood pressure, adiposity, dysglycaemia, or smoking (p value for association per minor allele ≥0·04 for each). By contrast, for every copy of 358Ala inherited, mean concentration of IL6R increased by 34·3% (95% CI 30·4–38·2) and of interleukin 6 by 14·6% (10·7–18·4), and mean concentration of C-reactive protein was reduced by 7·5% (5·9–9·1) and of fibrinogen by 1·0% (0·7–1·3). For every copy of 358Ala inherited, risk of coronary heart disease was reduced by 3·4% (1·8–5·0). Asp358Ala was not related to IL6R mRNA levels or interleukin-6 production in monocytes. Interpretation Large-scale human genetic and biomarker data are consistent with a causal association between IL6R-related pathways and coronary heart disease. Funding British Heart Foundation; UK Medical Research Council; UK National Institute of Health Research, Cambridge Biomedical Research Centre; BUPA Foundation.
Nature | 2015
Ron Do; Nathan O. Stitziel; Hong-Hee Won; Anders Jørgensen; Stefano Duga; Pier Angelica Merlini; Adam Kiezun; Martin Farrall; Anuj Goel; Or Zuk; Illaria Guella; Rosanna Asselta; Leslie A. Lange; Gina M. Peloso; Paul L. Auer; Domenico Girelli; Nicola Martinelli; Deborah N. Farlow; Mark A. DePristo; Robert Roberts; Alex Stewart; Danish Saleheen; John Danesh; Stephen E. Epstein; Suthesh Sivapalaratnam; G. Kees Hovingh; John J. P. Kastelein; Nilesh J. Samani; Heribert Schunkert; Jeanette Erdmann
Summary Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance1,2. When MI occurs early in life, the role of inheritance is substantially greater1. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families3–8 whereas common variants at more than 45 loci have been associated with MI risk in the population9–15. Here, we evaluate the contribution of rare mutations to MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes where rare coding-sequence mutations were more frequent in cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare, damaging mutations (3.1% of cases versus 1.3% of controls) were at 2.4-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). This sequence-based estimate of the proportion of early MI cases due to LDLR mutations is remarkably similar to an estimate made more than 40 years ago using total cholesterol16. At apolipoprotein A-V (APOA5), carriers of rare nonsynonymous mutations (1.4% of cases versus 0.6% of controls) were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase15,17 and apolipoprotein C318,19. When combined, these observations suggest that, beyond LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.
Circulation | 2009
Emanuele Di Angelantonio; Rajiv Chowdhury; Nadeem Sarwar; Kausik K. Ray; Reeta Gobin; Danish Saleheen; Alexander Thompson; Vilmundur Gudnason; Naveed Sattar; John Danesh
Background— Measurement of B-type natriuretic peptide (BNP) concentration or its precursor (N-terminal fragment [NT-proBNP]) is recommended in patients with symptoms of left ventricular dysfunction and in other settings, but the relevance of these peptides to cardiovascular disease (CVD) in general populations or in patients with stable vascular disease is uncertain. Methods and Results— Data were collated from 40 long-term prospective studies involving a total of 87 474 participants and 10 625 incident CVD outcomes. In a comparison of individuals in the top third with those in the bottom third of baseline values of natriuretic peptides, the combined risk ratio (RR), adjusted for several conventional risk factors, was 2.82 (95% confidence interval [CI], 2.40 to 3.33) for CVD. Analysis of the 6 studies with at least 250 CVD outcomes (which should be less prone to selective reporting than are smaller studies) yielded an adjusted RR of 1.94 (95% CI, 1.57 to 2.39). RRs were broadly similar with BNP or NT-proBNP (RR, 2.89 [95% CI, 1.91 to 4.38] and 2.82 [95% CI, 2.35 to 3.38], respectively) and by different baseline vascular risk (RR, 2.68 [95% CI, 2.07 to 3.47] in approximately general populations; RR, 3.35 [95% CI, 2.38 to 4.72] in people with elevated vascular risk factors; RR, 2.60 [95% CI, 1.99 to 3.38] in patients with stable CVD). Assay of BNP or NT-proBNP in addition to measurement of conventional CVD risk factors yielded generally modest improvements in risk discrimination. Conclusions— Available prospective studies indicate strong associations between circulating concentration of natriuretic peptides and CVD risk under a range of different circumstances. Further investigation is warranted, particularly in large general population studies, to clarify any predictive utility of these markers and to better control for publication bias.
Lancet Neurology | 2012
Matthew Traylor; Martin Farrall; Elizabeth G. Holliday; Cathie Sudlow; Jemma C. Hopewell; Yu Ching Cheng; Myriam Fornage; M. Arfan Ikram; Rainer Malik; Steve Bevan; Unnur Thorsteinsdottir; Michael A. Nalls; W. T. Longstreth; Kerri L. Wiggins; Sunaina Yadav; Eugenio Parati; Anita L. DeStefano; Bradford B. Worrall; Steven J. Kittner; Muhammad Saleem Khan; Alex P. Reiner; Anna Helgadottir; Sefanja Achterberg; Israel Fernandez-Cadenas; Shérine Abboud; Reinhold Schmidt; Matthew Walters; Wei-Min Chen; E. Bernd Ringelstein; Martin O'Donnell
Summary Background Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes. Methods We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls. Findings We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort. Interpretation Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes. Funding Wellcome Trust, UK Medical Research Council (MRC), Australian National and Medical Health Research Council, National Institutes of Health (NIH) including National Heart, Lung and Blood Institute (NHLBI), the National Institute on Aging (NIA), the National Human Genome Research Institute (NHGRI), and the National Institute of Neurological Disorders and Stroke (NINDS).
JAMA | 2012
E Di Angelantonio; Pei Gao; Lisa Pennells; Stephen Kaptoge; Muriel J. Caslake; Alexander Thompson; Adam S. Butterworth; Nadeem Sarwar; David Wormser; Danish Saleheen; Christie M. Ballantyne; Bruce M. Psaty; Johan Sundström; Paul M. Ridker; D Nagel; Richard F. Gillum; Ian Ford; Pierre Ducimetière; S Kiechl; Wolfgang Koenig; Dullaart Rpf.; Gerd Assmann; Ralph B. D'Agostino; Gilles R. Dagenais; Jackie A. Cooper; Daan Kromhout; Altan Onat; Robert W. Tipping; Agustín Gómez-de-la-Cámara; Anders H. Rosengren
CONTEXT The value of assessing various emerging lipid-related markers for prediction of first cardiovascular events is debated. OBJECTIVE To determine whether adding information on apolipoprotein B and apolipoprotein A-I, lipoprotein(a), or lipoprotein-associated phospholipase A2 to total cholesterol and high-density lipoprotein cholesterol (HDL-C) improves cardiovascular disease (CVD) risk prediction. DESIGN, SETTING, AND PARTICIPANTS Individual records were available for 165,544 participants without baseline CVD in 37 prospective cohorts (calendar years of recruitment: 1968-2007) with up to 15,126 incident fatal or nonfatal CVD outcomes (10,132 CHD and 4994 stroke outcomes) during a median follow-up of 10.4 years (interquartile range, 7.6-14 years). MAIN OUTCOME MEASURES Discrimination of CVD outcomes and reclassification of participants across predicted 10-year risk categories of low (<10%), intermediate (10%-<20%), and high (≥20%) risk. RESULTS The addition of information on various lipid-related markers to total cholesterol, HDL-C, and other conventional risk factors yielded improvement in the models discrimination: C-index change, 0.0006 (95% CI, 0.0002-0.0009) for the combination of apolipoprotein B and A-I; 0.0016 (95% CI, 0.0009-0.0023) for lipoprotein(a); and 0.0018 (95% CI, 0.0010-0.0026) for lipoprotein-associated phospholipase A2 mass. Net reclassification improvements were less than 1% with the addition of each of these markers to risk scores containing conventional risk factors. We estimated that for 100,000 adults aged 40 years or older, 15,436 would be initially classified at intermediate risk using conventional risk factors alone. Additional testing with a combination of apolipoprotein B and A-I would reclassify 1.1%; lipoprotein(a), 4.1%; and lipoprotein-associated phospholipase A2 mass, 2.7% of people to a 20% or higher predicted CVD risk category and, therefore, in need of statin treatment under Adult Treatment Panel III guidelines. CONCLUSION In a study of individuals without known CVD, the addition of information on the combination of apolipoprotein B and A-I, lipoprotein(a), or lipoprotein-associated phospholipase A2 mass to risk scores containing total cholesterol and HDL-C led to slight improvement in CVD prediction.