Danny Gauvreau
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Danny Gauvreau.
Journal of Organic Chemistry | 2012
Carmela Molinaro; Paul G. Bulger; Ernest E. Lee; Birgit Kosjek; Stephen Lau; Danny Gauvreau; Melissa Howard; Debra J. Wallace; Paul D. O’Shea
In this paper, we report the development of different synthetic routes to MK-7246 (1) designed by the Process Chemistry group. The syntheses were initially designed as an enabling tool for Medicinal Chemistry colleagues in order to rapidly explore structure-activity relationships (SAR) and to procure the first milligrams of diverse target molecules for in vitro evaluation. The initial aziridine opening/cyclodehydration strategy was also directly amenable to the first GMP deliveries of MK-7246 (1), streamlining the transition from milligram to kilogram-scale production needed to support early preclinical and clinical evaluation of this compound. Subsequently a more scalable and cost-effective manufacturing route to MK-7246 (1) was engineered. Highlights of the manufacturing route include an Ir-catalyzed intramolecular N-H insertion of sulfoxonium ylide 41 and conversion of ketone 32 to amine 31 in a single step with excellent enantioselectivity through a transaminase process. Reactions such as these illustrate the enabling impact and efficiency gains that innovative developments in chemo- and biocatalysis can have on the synthesis of pharmaceutically relevant target molecules.
Journal of Organic Chemistry | 2009
Paul O'shea; Cheng-yi Chen; Danny Gauvreau; Francis Gosselin; Greg Hughes; Christian Nadeau; Ralph P. Volante
An enantioselective synthesis of the Cathepsin K inhibitor odanacatib (MK-0822) 1 is described. The key step involves the novel stereospecific S(N)2 triflate displacement of a chiral alpha-trifluoromethylbenzyl triflate 9a with (S)-gamma-fluoroleucine ethyl ester 3 to generate the required alpha-trifluoromethylbenzyl amino stereocenter. The triflate displacement is achieved in high yield (95%) and minimal loss of stereochemistry. The overall synthesis of 1 is completed in 6 steps in 61% overall yield.
Journal of Organic Chemistry | 2010
Francis Gosselin; Britton Ra; Ian W. Davies; Dolman Sj; Danny Gauvreau; Hoerrner Rs; Gregory Hughes; Jacob Janey; Stephen Lau; Carmela Molinaro; Nadeau C; Paul O'shea; Michael Palucki; Rick R. Sidler
Practical, chromatography-free syntheses of 5-lipoxygenase inhibitor MK-0633 p-toluenesulfonate (1) are described. The first route used an asymmetric zincate addition to ethyl 2,2,2-trifluoropyruvate followed by 1,3,4-oxadiazole formation and reductive amination as key steps. An improved second route features an inexpensive diastereomeric salt resolution of vinyl hydroxy-acid 22 followed by a robust end-game featuring a through-process hydrazide acylation/1,3,4-oxadiazole ring closure/salt formation sequence to afford MK-0633 p-toluenesulfonate (1).
Bioorganic & Medicinal Chemistry Letters | 2014
Bernard Cote; Jason Burch; Ernest Asante-Appiah; Chris Bayly; Leanne L. Bedard; Marc Blouin; Louis-Charles Campeau; Elizabeth Cauchon; Manuel Chan; Amandine Chefson; Nathalie Coulombe; Wanda Cromlish; Smita Debnath; Denis Deschenes; Kristina Dupont-Gaudet; Jean-Pierre Falgueyret; Robert Forget; Sébastien Gagné; Danny Gauvreau; Mélina Girardin; Sébastien Guiral; Eric Langlois; Chun Sing Li; Natalie Nguyen; Rob Papp; Serge Plamondon; Amélie Roy; Stéphanie Roy; Ria Seliniotakis; Miguel St-Onge
The optimization of a novel series of non-nucleoside reverse transcriptase inhibitors (NNRTI) led to the identification of pyridone 36. In cell cultures, this new NNRTI shows a superior potency profile against a range of wild type and clinically relevant, resistant mutant HIV viruses. The overall favorable preclinical pharmacokinetic profile of 36 led to the prediction of a once daily low dose regimen in human. NNRTI 36, now known as MK-1439, is currently in clinical development for the treatment of HIV infection.
Journal of Organic Chemistry | 2010
Danny Gauvreau; Sarah J. Dolman; Greg Hughes; Paul O'shea; Ian W. Davies
The evolution of scalable, economically viable synthetic approaches to the potent and selective prostaglandin EP4 antagonist 1 is presented. The chromatography-free synthesis of multikilogram quantities of 1 using a seven-step sequence (six in the longest linear sequence) is described. This approach has been further modified in an effort to identify a long-term manufacturing route. Our final synthesis involves no step requiring cryogenic (< -25 degrees C) conditions; comprises a total of four steps, only three of which are in the longest linear synthesis; and features the use of two consecutive iron-catalyzed Friedel-Crafts substitutions.
Journal of Organic Chemistry | 2009
Paul D. O’Shea; Danny Gauvreau; Francis Gosselin; Greg Hughes; Christian Nadeau; Amélie Roy; C. Scott Shultz
A practical and efficient synthesis of bradykinin B(1) antagonist 1 is described. A convergent strategy was utilized which involved synthesis of three fragments: 3, 6, and 7. Cross coupling of fragments 6 and 7 followed by amidation with 3 enabled efficient synthesis of 1 in 19 steps total, a 35% overall yield from commercially available pyridine 10. The key to the success of the synthesis was the development of a fluorodenitration step to install the fluorine in pyridine 7 and a catalytic enantioselective hydrogenation of N-acyl enamide 9 to set the stereochemistry.
Bioorganic & Medicinal Chemistry Letters | 2015
Brendan M. Crowley; Craig A. Stump; Diem N. Nguyen; Craig M. Potteiger; Melody Mcwherter; Daniel V. Paone; Amy G. Quigley; Joseph G. Bruno; Dan Cui; J. Christopher Culberson; Andrew Danziger; Christine Fandozzi; Danny Gauvreau; Amanda L. Kemmerer; Karsten Menzel; Eric L. Moore; Scott D. Mosser; Vijay Bhasker G. Reddy; Rebecca B. White; Christopher A. Salvatore; Stefanie A. Kane; Ian M. Bell; Harold G. Selnick; Mark E. Fraley; Christopher S. Burgey
In our efforts to develop CGRP receptor antagonists as backups to MK-3207, 2, we employed a scaffold hopping approach to identify a series of novel oxazolidinone-based compounds. The development of a structurally diverse, potent (20, cAMP+HS IC50=0.67 nM), and selective compound (hERG IC50=19 μM) with favorable rodent pharmacokinetics (F=100%, t1/2=7h) is described. Key to this development was identification of a 3-substituted spirotetrahydropyran ring that afforded a substantial gain in potency (10 to 35-fold).
Journal of Organic Chemistry | 2009
Carmela Molinaro; Danny Gauvreau; Gregory Hughes; Stephen Lau; Sophie Lauzon; Remy Angelaud; Paul D. O’Shea; Jacob Janey; Michael Palucki; Scott R. Hoerrner; Conrad E. Raab; Rick R. Sidler; Michel Belley; Yongxin Han
A practical large-scale chromatography-free synthesis of EP4 antagonist MF-310, a potential new treatment for chronic inflammation, is presented. The synthetic route provided MF-310 as its sodium salt in 10 steps and 17% overall yield from commercially available pyridine dicarboxylate 7. The key features of this sequence include a unique regioselective reduction of succinimide 2 controlled by the electronic properties of a remote pyridine ring, preparation of cyclopropane carboxylic acid 3 via a Corey-Chaykovsky cyclopropanation, and a short synthesis of sulfonamide 5.
Organic Letters | 2010
Danny Gauvreau; Greg Hughes; Stephen Lau; Daniel J. McKay; Paul D. O’Shea; Rick R. Sidler; Bing Yu; Ian W. Davies
A scalable synthesis of a potent renin inhibitor (1) is described. The absolute stereochemistry is set via an unprecedented diastereoselective Dieckmann cyclization directed by a remote chiral protecting group. This transformation enables preparation of chiral 1,3-[3.3.1]-diazabicyclononenes by desymmetrization of alkyl-esters, with selectivities ranging from 4 to 17:1.
Organic Process Research & Development | 2013
Mélina Girardin; Stéphane G. Ouellet; Danny Gauvreau; Jeffrey C. Moore; Greg Hughes; Paul N. Devine; Paul D. O’Shea; Louis-Charles Campeau