Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louis-Charles Campeau is active.

Publication


Featured researches published by Louis-Charles Campeau.


Journal of the American Chemical Society | 2009

Palladium-Catalyzed Direct Arylation of Azine and Azole N-Oxides: Reaction Development, Scope and Applications in Synthesis

Louis-Charles Campeau; Jean-Philippe Leclerc; Mégan Bertrand-Laperle; Elisia Villemure; Ho-Yan Sun; Sandrine Lasserre; Nicolas Guimond; Melanie Lecavallier; Keith Fagnou

Palladium-catalyzed direct arylation reactions are described with a broad range of azine and azole N-oxides. In addition to aspects of functional group compatibility, issues of regioselectivity have been explored when nonsymmetrical azine N-oxides are used. In these cases, both the choice of ligand and the nature of the azine substituents play important roles in determining the regioisomeric distribution. When azole N-oxides are employed, preferential reaction is observed for arylation at C2 which occurs under very mild conditions. Subsequent reactions are observed to occur at C5 followed by arylation at C4. The potential utility of this methodology is illustrated by its use in the synthesis of a potent sodium channel inhibitor 1 and a Tie2 Tyrosine Kinase inhibitor 2.


Journal of the American Chemical Society | 2008

Site-Selective sp2 and Benzylic sp3 Palladium-Catalyzed Direct Arylation

Louis-Charles Campeau; Derek J. Schipper; Keith Fagnou

Palladium-catalyzed site selective arylation reactions of both sp2 and benzylic sp3 sites on azine and diazine N-oxide substrates are described that occur in good to excellent yield and with complete selectivity for reaction at the desired position. These studies have uncovered the need to properly control the metal to ligand ratio in sp2 arylation and necessitated a complete reinvestigation of all reaction parameters for sp3 arylation. From these studies, the choice of base emerged as a pivotal component for site selectivity, pointing to its intimate involvement in the mechanism of direct arylation. These site selective reactions have been validated in both divergent and sequential derivatizations of heterocyclic compounds represent an attractive alternative to other routes to this class of molecule.


Journal of the American Chemical Society | 2008

C2, C5, and C4 Azole N-Oxide Direct Arylation Including Room-Temperature Reactions

Louis-Charles Campeau; Mégan Bertrand-Laperle; Jean-Philippe Leclerc; Elisia Villemure; Serge I. Gorelsky; Keith Fagnou

The N-oxide group imparts a dramatic increase in reactivity at all positions of the azole ring of thiazoles and imidazoles and changes the weak bias for C5 > C2 arylation to a reliable C2 > C5 > C4 reactivity profile. Use of this cross-coupling strategy enables high yielding and room-temperature C2 arylations, mild reactions at C5, and the first examples of C4 arylationproviding a unique opportunity for exhaustive functionalization of the azole core with complete control of regioselectivity. A correlation of reactivity with the relative contributions of each carbon atom to the HOMO is observed and discussed.


Chemical Society Reviews | 2007

Applications of and alternatives to π-electron-deficient azine organometallics in metal catalyzed cross-coupling reactions

Louis-Charles Campeau; Keith Fagnou

While the use of pi-deficient azine halides in palladium catalyzed cross-coupling reactions is common, the use of pi-electron deficient azine organometallics has been less intensively examined. In recent years, important advances have been made that are beginning to address this deficiency and need. The purpose of this tutorial review is to highlight and discuss the innovations that facilitate the synthesis of azine-containing biaryls with a focus on the pyridine structural motif. Given the number of important compounds which exhibit azine-heterobiaryls and the wide use of cross-coupling methods in their synthesis, this review should be of interest among synthetic organic chemists and organometallic chemists alike.


Journal of Organic Chemistry | 2010

Mechanistic Analysis of Azine N-Oxide Direct Arylation: Evidence for a Critical Role of Acetate in the Pd(OAc)2 Precatalyst

Ho-Yan Sun; Serge I. Gorelsky; Louis-Charles Campeau; Keith Fagnou

Detailed mechanistic studies on the palladium-catalyzed direct arylation of pyridine N-oxides are presented. The order of each reaction component is determined to provide a general mechanistic picture. The C-H bond cleaving step is examined in further detail through computational studies, and the calculated results are in support of an inner-sphere concerted metalation-deprotonation (CMD) pathway. Competition experiments were conducted with N-oxides of varying electronic characters, and results revealed an enhancement of rate when using a more electron-deficient species, which is in support of a CMD transition state. The effect of base on reaction rate was also examined and it was found that a carboxylate base was required for the reaction to proceed. This led to the conclusion that Pd(OAc)(2) plays a pivotal role in the reaction mechanism as more than merely a precatalyst, but also as a source of acetate base required for the C-H bond cleavage step.


Science | 2015

Nanomole-scale high-throughput chemistry for the synthesis of complex molecules

Alexander Buitrago Santanilla; Erik L. Regalado; Tony Pereira; Michael Shevlin; Kevin P. Bateman; Louis-Charles Campeau; Jonathan Schneeweis; Simon Berritt; Zhi-Cai Shi; Philippe G. Nantermet; Yong Liu; Roy Helmy; Christopher J. Welch; Petr Vachal; Ian W. Davies; Tim Cernak; Spencer D. Dreher

Breaking through the milligram floor When chemists synthesize compounds, the threshold for success is at least a milligram of product. This has been true for decades—even though biochemical assays have long since descended into microgram territory—and results in part from the constraints of characterization methods. Buitrago Santanilla et al. present an automated dosing and characterization protocol for optimizing chemical reaction conditions on the microgram scale. This allowed them to screen numerous base and ligand combinations for catalytic C-N bond-forming reactions between complex pairs of compounds, in short supply, that resisted standard coupling conditions. Science, this issue p. 49 Automated technology enables chemical reaction optimization using micrograms of material. At the forefront of new synthetic endeavors, such as drug discovery or natural product synthesis, large quantities of material are rarely available and timelines are tight. A miniaturized automation platform enabling high-throughput experimentation for synthetic route scouting to identify conditions for preparative reaction scale-up would be a transformative advance. Because automated, miniaturized chemistry is difficult to carry out in the presence of solids or volatile organic solvents, most of the synthetic “toolkit” cannot be readily miniaturized. Using palladium-catalyzed cross-coupling reactions as a test case, we developed automation-friendly reactions to run in dimethyl sulfoxide at room temperature. This advance enabled us to couple the robotics used in biotechnology with emerging mass spectrometry–based high-throughput analysis techniques. More than 1500 chemistry experiments were carried out in less than a day, using as little as 0.02 milligrams of material per reaction.


Organic Letters | 2008

Palladium-Catalyzed Direct Arylation of Nitro-Substituted Aromatics with Aryl Halides

Laurence Caron; Louis-Charles Campeau; Keith Fagnou

Direct arylation reactions of nitrobenzenes and aryl halides occur in good yield and high ortho regioselectivity. These reactions can be performed on gram scale with as few as 3 equiv of the nitro arene relative to the aryl halide. The synthetic utility of this method is demonstrated via rapid synthesis of a Boscalid intermediate.


Chemical Communications | 2006

Palladium-catalyzed direct arylation of simple arenes in synthesis of biaryl molecules

Louis-Charles Campeau; Keith Fagnou

Significant progress has been made in the direct arylation of simple arenes. A number of catalyst systems have been developed which enable the intramolecular direct arylation of aryl chlorides, bromides and iodides in high yield as well as conditions capable of achieving intermolecular direct arylation with simple arenes. This account describes recent progress by our group and others in the development of these reactions.


Journal of the American Chemical Society | 2016

Cobalt-Catalyzed Enantioselective Hydrogenation of Minimally Functionalized Alkenes: Isotopic Labeling Provides Insight into the Origin of Stereoselectivity and Alkene Insertion Preferences

Max R. Friedfeld; Michael Shevlin; Grant W. Margulieux; Louis-Charles Campeau

The asymmetric hydrogenation of cyclic alkenes lacking coordinating functionality with a C1-symmetric bis(imino)pyridine cobalt catalyst is described and has been applied to the synthesis of important substructures found in natural products and biologically active compounds. High activities and enantioselectivities were observed with substituted benzo-fused five-, six-, and seven-membered alkenes. The stereochemical outcome was dependent on both the ring size and exo/endo disposition. Deuterium labeling experiments support rapid and reversible 2,1-insertion that is unproductive for generating alkane product but accounts for the unusual isotopic distribution in deuterated alkanes. Analysis of the stereochemical outcome of the hydrogenated products coupled with isotopic labeling, stoichiometric, and kinetic studies established 1,2-alkene insertion as both turnover limiting and enantiodetermining with no evidence for erosion of cobalt alkyl stereochemistry by competing β-hydrogen elimination processes. A stereochemical model accounting for the preferred antipodes of the alkanes is proposed and relies on the subtle influence of the achiral aryl imine substituent on the cobalt catalyst.


Journal of the American Chemical Society | 2016

Nickel-Catalyzed Asymmetric Alkene Hydrogenation of α,β-Unsaturated Esters: High-Throughput Experimentation-Enabled Reaction Discovery, Optimization, and Mechanistic Elucidation

Michael Shevlin; Max R. Friedfeld; Huaming Sheng; Nicholas A. Pierson; Jordan M. Hoyt; Louis-Charles Campeau

A highly active and enantioselective phosphine-nickel catalyst for the asymmetric hydrogenation of α,β-unsaturated esters has been discovered. The coordination chemistry and catalytic behavior of nickel halide, acetate, and mixed halide-acetate with chiral bidentate phosphines have been explored and deuterium labeling studies, the method of continuous variation, nonlinear studies, and kinetic measurements have provided mechanistic understanding. Activation of molecular hydrogen by a trimeric (Me-DuPhos)3Ni3(OAc)5I complex was established as turnover limiting followed by rapid conjugate addition of a nickel hydride and nonselective protonation to release the substrate. In addition to reaction discovery and optimization, the previously unreported utility high-throughput experimentation for mechanistic elucidation is also described.

Collaboration


Dive into the Louis-Charles Campeau's collaboration.

Researchain Logo
Decentralizing Knowledge