Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danny Tholen is active.

Publication


Featured researches published by Danny Tholen.


Plant Physiology | 2011

Leaf Functional Anatomy in Relation to Photosynthesis

Ichiro Terashima; Yuko T. Hanba; Danny Tholen; Ülo Niinemets

Rubisco is a large enzyme with a molecular mass of approximately 550 kD. The maximum rate of CO2 fixation (i.e. ribulose-1,5-bisphosphate [RuBP] carboxylation) at CO2 saturation is only 15 to 30 mol CO2 mol−1 Rubisco protein s−1 at 25°C. Affinity to CO2 is also low, and the K m, K c, at 25°C


Plant Cell and Environment | 2012

Variable mesophyll conductance revisited: theoretical background and experimental implications

Danny Tholen; Gilbert Ethier; Bernard Genty; Steeve Pepin; Xin-Guang Zhu

The CO(2) concentration at the site of carboxylation inside the chloroplast stroma depends not only on the stomatal conductance, but also on the conductance of CO(2) between substomatal cavities and the site of CO(2) fixation. This conductance, commonly termed mesophyll conductance (g(m) ), significantly constrains the rate of photosynthesis. Here we show that estimates of g(m) are influenced by the amount of respiratory and photorespiratory CO(2) from the mitochondria diffusing towards the chloroplasts. This results in an apparent CO(2) and oxygen sensitivity of g(m) that does not imply a change in intrinsic diffusion properties of the mesophyll, but depends on the ratio of mitochondrial CO(2) release to chloroplast CO(2) uptake. We show that this effect (1) can bias the estimation of the CO(2) photocompensation point and non-photorespiratory respiration in the light; (2) can affect the estimates of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) kinetic constants in vivo; and (3) results in an apparent obligatory correlation between stomatal conductance and g(m) . We further show that the amount of photo(respiratory) CO(2) that is refixed by Rubisco can be directly estimated through measurements of g(m) .


Plant Physiology | 2011

The Mechanistic Basis of Internal Conductance: A Theoretical Analysis of Mesophyll Cell Photosynthesis and CO2 Diffusion

Danny Tholen; Xin-Guang Zhu

Photosynthesis is limited by the conductance of carbon dioxide (CO2) from intercellular spaces to the sites of carboxylation. Although the concept of internal conductance (gi) has been known for over 50 years, shortcomings in the theoretical description of this process may have resulted in a limited understanding of the underlying mechanisms. To tackle this issue, we developed a three-dimensional reaction-diffusion model of photosynthesis in a typical C3 mesophyll cell that includes all major components of the CO2 diffusion pathway and associated reactions. Using this novel systems model, we systematically and quantitatively examined the mechanisms underlying gi. Our results identify the resistances of the cell wall and chloroplast envelope as the most significant limitations to photosynthesis. In addition, the concentration of carbonic anhydrase in the stroma may also be limiting for the photosynthetic rate. Our analysis demonstrated that higher levels of photorespiration increase the apparent resistance to CO2 diffusion, an effect that has thus far been ignored when determining gi. Finally, we show that outward bicarbonate leakage through the chloroplast envelope could contribute to the observed decrease in gi under elevated CO2. Our analysis suggests that physiological and anatomical features associated with gi have been evolutionarily fine-tuned to benefit CO2 diffusion and photosynthesis. The model presented here provides a novel theoretical framework to further analyze the mechanisms underlying diffusion processes in the mesophyll.


Plant Physiology | 2004

Ethylene Insensitivity Does Not Increase Leaf Area or Relative Growth Rate in Arabidopsis, Nicotiana tabacum, and Petunia x hybrida

Danny Tholen; Laurentius A. C. J. Voesenek; Hendrik Poorter

The plant hormone ethylene plays a role in various growth related processes. In this detailed study of the vegetative growth of Arabidopsis, Nicotiana tabacum, and Petunia x hybrida plants, we show that ethylene insensitivity does not result in an increased total leaf area or relative growth rate (RGR) under optimal growth conditions. When grown in semiclosed containers, leaf area of ethylene-insensitive plants was larger compared to the wild type. This effect was caused by a buildup of ethylene inside these containers, which inhibited the growth of wild-type plants. Ethylene-insensitive Arabidopsis and N. tabacum plants had a lower biomass, which was mainly the result of a smaller seed mass. RGR of vegetative plants was not affected by ethylene insensitivity, but the underlying components of RGR differed; specific leaf area (leaf area per unit leaf mass) was higher, and unit leaf rate (growth rate per unit leaf area) was lower. The latter was a result of a slower rate of photosynthesis per unit leaf area in the ethylene-insensitive plants.


Plant Cell and Environment | 2011

Distinct responses of the mitochondrial respiratory chain to long- and short-term high-light environments in Arabidopsis thaliana.

Keisuke Yoshida; Chihiro K. Watanabe; Takushi Hachiya; Danny Tholen; Masaru Shibata; Ichiro Terashima; Ko Noguchi

In order to ensure the cooperative function with the photosynthetic system, the mitochondrial respiratory chain needs to flexibly acclimate to a fluctuating light environment. The non-phosphorylating alternative oxidase (AOX) is a notable respiratory component that may support a cellular redox homeostasis under high-light (HL) conditions. Here we report the distinct acclimatory manner of the respiratory chain to long- and short-term HL conditions and the crucial function of AOX in Arabidopsis thaliana leaves. Plants grown under HL conditions (HL plants) possessed a larger ubiquinone (UQ) pool and a higher amount of cytochrome c oxidase than plants grown under low light conditions (LL plants). These responses in HL plants may be functional for efficient ATP production and sustain the fast plant growth. When LL plants were exposed to short-term HL stress (sHL), the UQ reduction level was transiently elevated. In the wild-type plant, the UQ pool was re-oxidized concomitantly with an up-regulation of AOX. On the other hand, the UQ reduction level of the AOX-deficient aox1a mutant remained high. Furthermore, the plastoquinone pool was also more reduced in the aox1a mutant under such conditions. These results suggest that AOX plays an important role in rapid acclimation of the respiratory chain to sHL, which may support efficient photosynthetic performance.


Plant Physiology | 2007

Ethylene Insensitivity Results in Down-Regulation of Rubisco Expression and Photosynthetic Capacity in Tobacco

Danny Tholen; Thijs L. Pons; Laurentius A. C. J. Voesenek; Hendrik Poorter

Little is known about the effect of hormones on the photosynthetic process. Therefore, we studied Rubisco content and expression along with gas exchange parameters in transgenic tobacco (Nicotiana tabacum) plants that are not able to sense ethylene. We also tested for a possible interaction between ethylene insensitivity, abscisic acid (ABA), and sugar feedback on photosynthesis. We measured Rubisco content in seedlings grown in agar with or without added sugar and fluridone, and Rubisco expression in hydroponically grown vegetative plants grown at low and high CO2. Furthermore, we analyzed gas exchange and the photosynthetic machinery of transformants and wild-type plants grown under standard conditions. In the presence of exogenous glucose (Glc), agar-grown seedlings of the ethylene-insensitive genotype had lower amounts of Rubisco per unit leaf area than the wild type. No differences in Rubisco content were found between ethylene-insensitive and wild-type seedlings treated with fluridone, suggesting that inhibition of ABA production nullified the effect of Glc application. When larger, vegetative plants were grown at different atmospheric CO2 concentrations, a negative correlation was found between Glc concentration in the leaves and Rubisco gene expression, with stronger repression by high Glc concentrations in ethylene-insensitive plants. Ethylene insensitivity resulted in plants with comparable fractions of nitrogen invested in light harvesting, but lower amounts in electron transport and Rubisco. Consequently, photosynthetic capacity of the insensitive genotype was clearly lower compared with the wild type. We conclude that the inability to perceive ethylene results in increased sensitivity to Glc, which may be mediated by a higher ABA concentration. This increased sensitivity to endogenous Glc has negative consequences for Rubisco content and photosynthetic capacity of these plants.


Plant Science | 2012

Opinion: Prospects for improving photosynthesis by altering leaf anatomy

Danny Tholen; Carolina Boom; Xin-Guang Zhu

Engineering higher photosynthetic efficiency for greater crop yields has gained significant attention among plant biologists and breeders. To achieve this goal, manipulation of metabolic targets and canopy architectural features has been heavily emphasized. Given the substantial variations in leaf anatomical features among and within plant species, there is large potential to engineer leaf anatomy for improved photosynthetic efficiency. Here we review how different leaf anatomical features influence internal light distribution, delivery of CO(2) to Rubisco and water relations, and accordingly recommend features to engineer for increased leaf photosynthesis under different environments. More research is needed on (a) elucidating the genetic mechanisms controlling leaf anatomy, and (b) the development of a three dimensional biochemical and biophysical model of leaf photosynthesis, which can help pinpoint anatomical features required to gain a higher photosynthesis.


Plant Physiology | 2015

The benefits of photorespiratory bypasses: How can they work?

Chang-Peng Xin; Danny Tholen; Vincent Devloo; Xin-Guang Zhu

The benefits of a photorespiratory bypass depend on its metabolic and chloroplast membrane diffusion properties. Bypassing the photorespiratory pathway is regarded as a way to increase carbon assimilation and, correspondingly, biomass production in C3 crops. Here, the benefits of three published photorespiratory bypass strategies are systemically explored using a systems-modeling approach. Our analysis shows that full decarboxylation of glycolate during photorespiration would decrease photosynthesis, because a large amount of the released CO2 escapes back to the atmosphere. Furthermore, we show that photosynthesis can be enhanced by lowering the energy demands of photorespiration and by relocating photorespiratory CO2 release into the chloroplasts. The conductance of the chloroplast membranes to CO2 is a key feature determining the benefit of the relocation of photorespiratory CO2 release. Although our results indicate that the benefit of photorespiratory bypasses can be improved by increasing sedoheptulose bisphosphatase activity and/or increasing the flux through the bypass, the effectiveness of such approaches depends on the complex regulation between photorespiration and other metabolic pathways.


Plant Cell and Environment | 2010

Ammonium-dependent respiratory increase is dependent on the cytochrome pathway in Arabidopsis thaliana shoots.

Takushi Hachiya; Chihiro K. Watanabe; Carolina Boom; Danny Tholen; Kentaro Takahara; Maki Kawai-Yamada; Hirofumi Uchimiya; Yukifumi Uesono; Ichiro Terashima; Ko Noguchi

Oxygen uptake rates are increased when concentrated ammonium instead of nitrate is used as sole N source. Several explanations for this increased respiration have been suggested, but the underlying mechanisms are still unclear. To investigate possible factors responsible for this respiratory increase, we measured the O₂ uptake rate, activity and transcript level of respiratory components, and concentration of adenylates using Arabidopsis thaliana shoots grown in media containing various N sources. The O₂ uptake rate was correlated with concentrations of ammonium and ATP in shoots, but not related to the ammonium assimilation. The capacity of the ATP-coupling cytochrome pathway (CP) and its related genes were up-regulated when concentrated ammonium was sole N source, whereas the ATP-uncoupling alternative oxidase did not influence the extent of the respiratory increase. Our results suggest that the ammonium-dependent increase of the O₂ uptake rate can be explained by the up-regulation of the CP, which may be related to the ATP consumption by the plasma-membrane H+ -ATPase.


Science in China Series F: Information Sciences | 2011

The next generation models for crops and agro-ecosystems

Xin-Guang Zhu; Guilian Zhang; Danny Tholen; Yu Wang; Chang-Peng Xin; Qingfeng Song

Growth in population, decrease in arable land area, and change in climate are endangering our food security. Precision agriculture has the potential to increase crop productivity thorough tailored agricultural practices for different growing areas. Many models of crops and agro-ecosystems capable of predicting interaction between plants and environments have been developed for precision agriculture. Currently, there are several representative categories of crop and agro-ecosystem models, including the de Wit school models, the DSSAT series models and the APSIM series models, which have contributed substantially to improvement of agricultural practices. However, these models are weak in predicting performances of crops under environmental and genetic perturbations are generally weak, which severely limits the application of these models in guiding precision agriculture. We need to develop the next generation crop and agro-ecosystems models with a high level of mechanistic basis, which can be integrated with high throughput data and can predict the heterogeneity of environmental factors inside canopy and dynamic canopy photosynthesis. In developing such a model close collaboration is inevitably required among scientists from different disciplines. The successful development and application of such models will undoubtedly advance precision agriculture through providing better agronomical practices tailored for different growing environments. These models will also form a basis to identify breeding targets for increased productivity at given location with given soil and climatic conditions.

Collaboration


Dive into the Danny Tholen's collaboration.

Top Co-Authors

Avatar

Xin-Guang Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hendrik Poorter

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Chang-Peng Xin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qingfeng Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuyue Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yu Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge