Xin-Guang Zhu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xin-Guang Zhu.
Annual Review of Plant Biology | 2010
Xin-Guang Zhu; Stephen P. Long; Donald R. Ort
Increasing the yield potential of the major food grain crops has contributed very significantly to a rising food supply over the past 50 years, which has until recently more than kept pace with rising global demand. Whereas improved photosynthetic efficiency has played only a minor role in the remarkable increases in productivity achieved in the last half century, further increases in yield potential will rely in large part on improved photosynthesis. Here we examine inefficiencies in photosynthetic energy transduction in crops from light interception to carbohydrate synthesis, and how classical breeding, systems biology, and synthetic biology are providing new opportunities to develop more productive germplasm. Near-term opportunities include improving the display of leaves in crop canopies to avoid light saturation of individual leaves and further investigation of a photorespiratory bypass that has already improved the productivity of model species. Longer-term opportunities include engineering into plants carboxylases that are better adapted to current and forthcoming CO(2) concentrations, and the use of modeling to guide molecular optimization of resource investment among the components of the photosynthetic apparatus, to maximize carbon gain without increasing crop inputs. Collectively, these changes have the potential to more than double the yield potential of our major crops.
Current Opinion in Biotechnology | 2008
Xin-Guang Zhu; Stephen P. Long; Donald R. Ort
Photosynthesis is the source of our food and fiber. Increasing world population, economic development, and diminishing land resources forecast that a doubling of productivity is critical in meeting agricultural demand before the end of this century. A starting point for evaluating the global potential to meet this goal is establishing the maximum efficiency of photosynthetic solar energy conversion. The potential efficiency of each step of the photosynthetic process from light capture to carbohydrate synthesis is examined. This reveals the maximum conversion efficiency of solar energy to biomass is 4.6% for C3 photosynthesis at 30 degrees C and todays 380 ppm atmospheric [CO2], but 6% for C4 photosynthesis. This advantage over C3 will disappear as atmospheric [CO2] nears 700 ppm.
Journal of Experimental Botany | 2011
Martin A. J. Parry; Matthew P. Reynolds; Michael E. Salvucci; Christine A. Raines; P. John Andralojc; Xin-Guang Zhu; G. Dean Price; Anthony G. Condon; Robert T. Furbank
Past increases in yield potential of wheat have largely resulted from improvements in harvest index rather than increased biomass. Further large increases in harvest index are unlikely, but an opportunity exists for increasing productive biomass and harvestable grain. Photosynthetic capacity and efficiency are bottlenecks to raising productivity and there is strong evidence that increasing photosynthesis will increase crop yields provided that other constraints do not become limiting. Even small increases in the rate of net photosynthesis can translate into large increases in biomass and hence yield, since carbon assimilation is integrated over the entire growing season and crop canopy. This review discusses the strategies to increase photosynthesis that are being proposed by the wheat yield consortium in order to increase wheat yields. These include: selection for photosynthetic capacity and efficiency, increasing ear photosynthesis, optimizing canopy photosynthesis, introducing chloroplast CO(2) pumps, increasing RuBP regeneration, improving the thermal stability of Rubisco activase, and replacing wheat Rubisco with that from other species with different kinetic properties.
Plant Physiology | 2007
Xin-Guang Zhu; Eric de Sturler; Stephen P. Long
The distribution of resources between enzymes of photosynthetic carbon metabolism might be assumed to have been optimized by natural selection. However, natural selection for survival and fecundity does not necessarily select for maximal photosynthetic productivity. Further, the concentration of a key substrate, atmospheric CO2, has changed more over the past 100 years than the past 25 million years, with the likelihood that natural selection has had inadequate time to reoptimize resource partitioning for this change. Could photosynthetic rate be increased by altered partitioning of resources among the enzymes of carbon metabolism? This question is addressed using an “evolutionary” algorithm to progressively search for multiple alterations in partitioning that increase photosynthetic rate. To do this, we extended existing metabolic models of C3 photosynthesis by including the photorespiratory pathway (PCOP) and metabolism to starch and sucrose to develop a complete dynamic model of photosynthetic carbon metabolism. The model consists of linked differential equations, each representing the change of concentration of one metabolite. Initial concentrations of metabolites and maximal activities of enzymes were extracted from the literature. The dynamics of CO2 fixation and metabolite concentrations were realistically simulated by numerical integration, such that the model could mimic well-established physiological phenomena. For example, a realistic steady-state rate of CO2 uptake was attained and then reattained after perturbing O2 concentration. Using an evolutionary algorithm, partitioning of a fixed total amount of protein-nitrogen between enzymes was allowed to vary. The individual with the higher light-saturated photosynthetic rate was selected and used to seed the next generation. After 1,500 generations, photosynthesis was increased substantially. This suggests that the “typical” partitioning in C3 leaves might be suboptimal for maximizing the light-saturated rate of photosynthesis. An overinvestment in PCOP enzymes and underinvestment in Rubisco, sedoheptulose-1,7-bisphosphatase, and fructose-1,6-bisphosphate aldolase were indicated. Increase in sink capacity, such as increase in ADP-glucose pyrophosphorylase, was also indicated to lead to increased CO2 uptake rate. These results suggest that manipulation of partitioning could greatly increase carbon gain without any increase in the total protein-nitrogen investment in the apparatus for photosynthetic carbon metabolism.
Planta | 2005
Xin-Guang Zhu; Govindjee; Neil R. Baker; Eric DeSturler; Donald R. Ort; Stephen P. Long
Chlorophyll a fluorescence induction (FI) is widely used as a probe for studying photosynthesis. On illumination, fluorescence emission rises from an initial level O to a maximum P through transient steps, termed J and I. FI kinetics reflect the overall performance of photosystem II (PSII). Although FI kinetics are commonly and easily measured, there is a lack of consensus as to what controls the characteristic series of transients, partially because most of the current models of FI focus on subsets of reactions of PSII, but not the whole. Here we present a model of fluorescence induction, which includes all discrete energy and electron transfer steps in and around PSII, avoiding any assumptions about what is critical to obtaining O J I P kinetics. This model successfully simulates the observed kinetics of fluorescence induction including O J I P transients. The fluorescence emission in this model was calculated directly from the amount of excited singlet-state chlorophyll in the core and peripheral antennae of PSII. Electron and energy transfer were simulated by a series of linked differential equations. A variable step numerical integration procedure (ode15s) from MATLAB provided a computationally efficient method of solving these linked equations. This in silico representation of the complete molecular system provides an experimental workbench for testing hypotheses as to the underlying mechanism controlling the O J I P kinetics and fluorescence emission at these points. Simulations based on this model showed that J corresponds to the peak concentrations of QA−QB (QA and QB are the first and second quinone electron acceptor of PSII respectively) and QA−QB− and I to the first shoulder in the increase in concentration of QA−QB2−. The P peak coincides with maximum concentrations of both QA−QB2− and PQH2. In addition, simulations using this model suggest that different ratios of the peripheral antenna and core antenna lead to differences in fluorescence emission at O without affecting fluorescence emission at J, I and P. An increase in the concentration of QB-nonreducing PSII centers leads to higher fluorescence emission at O and correspondingly decreases the variable to maximum fluorescence ratio (Fv/Fm).
Cell | 2015
Stephen P. Long; Amy Marshall-Colon; Xin-Guang Zhu
Increase in demand for our primary foodstuffs is outstripping increase in yields, an expanding gap that indicates large potential food shortages by mid-century. This comes at a time when yield improvements are slowing or stagnating as the approaches of the Green Revolution reach their biological limits. Photosynthesis, which has been improved little in crops and falls far short of its biological limit, emerges as the key remaining route to increase the genetic yield potential of our major crops. Thus, there is a timely need to accelerate our understanding of the photosynthetic process in crops to allow informed and guided improvements via in-silico-assisted genetic engineering. Potential and emerging approaches to improving crop photosynthetic efficiency are discussed, and the new tools needed to realize these changes are presented.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Donald R. Ort; Sabeeha S. Merchant; Jean Alric; Alice Barkan; Robert E. Blankenship; Ralph Bock; Roberta Croce; Maureen R. Hanson; Julian M. Hibberd; Stephen P. Long; Thomas A. Moore; James V. Moroney; Krishna K. Niyogi; Martin A. J. Parry; Pamela Peralta-Yahya; Roger C. Prince; Kevin E. Redding; Martin H. Spalding; Klaas J. van Wijk; Wim Vermaas; Susanne von Caemmerer; Andreas P. M. Weber; Todd O. Yeates; Joshua S. Yuan; Xin-Guang Zhu
The world’s crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production.
The Plant Cell | 2010
Thomas P. Brutnell; Lin Wang; Kerry Swartwood; Alexander Goldschmidt; David Jackson; Xin-Guang Zhu; Elizabeth A. Kellogg; Joyce Van Eck
C4 photosynthesis drives productivity in several major food crops and bioenergy grasses, including maize (Zea mays), sugarcane (Saccharum officinarum), sorghum (Sorghum bicolor), Miscanthus x giganteus, and switchgrass (Panicum virgatum). Gains in productivity associated with C4 photosynthesis include improved water and nitrogen use efficiencies. Thus, engineering C4 traits into C3 crops is an attractive target for crop improvement. However, the lack of a small, rapid cycling genetic model system to study C4 photosynthesis has limited progress in dissecting the regulatory networks underlying the C4 syndrome. Setaria viridis is a member of the Panicoideae clade and is a close relative of several major feed, fuel, and bioenergy grasses. It is a true diploid with a relatively small genome of ~510 Mb. Its short stature, simple growth requirements, and rapid life cycle will greatly facilitate genetic studies of the C4 grasses. Importantly, S. viridis uses an NADP-malic enzyme subtype C4 photosynthetic system to fix carbon and therefore is a potentially powerful model system for dissecting C4 photosynthesis. Here, we summarize some of the recent advances that promise greatly to accelerate the use of S. viridis as a genetic system. These include our recent successful efforts at regenerating plants from seed callus, establishing a transient transformation system, and developing stable transformation.
Plant Physiology | 2011
Donald R. Ort; Xin-Guang Zhu; Anastasios Melis
The theoretical upper limit for the operational efficiency of plant photosynthesis has been estimated from a detailed stepwise analysis of the biophysical and biochemical subprocesses to be about 4.6% for C3 and 6.0% C4 plants ([Zhu et al., 2008][1], [2010][2]). (These estimates assume a leaf
Plant Cell and Environment | 2012
Danny Tholen; Gilbert Ethier; Bernard Genty; Steeve Pepin; Xin-Guang Zhu
The CO(2) concentration at the site of carboxylation inside the chloroplast stroma depends not only on the stomatal conductance, but also on the conductance of CO(2) between substomatal cavities and the site of CO(2) fixation. This conductance, commonly termed mesophyll conductance (g(m) ), significantly constrains the rate of photosynthesis. Here we show that estimates of g(m) are influenced by the amount of respiratory and photorespiratory CO(2) from the mitochondria diffusing towards the chloroplasts. This results in an apparent CO(2) and oxygen sensitivity of g(m) that does not imply a change in intrinsic diffusion properties of the mesophyll, but depends on the ratio of mitochondrial CO(2) release to chloroplast CO(2) uptake. We show that this effect (1) can bias the estimation of the CO(2) photocompensation point and non-photorespiratory respiration in the light; (2) can affect the estimates of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) kinetic constants in vivo; and (3) results in an apparent obligatory correlation between stomatal conductance and g(m) . We further show that the amount of photo(respiratory) CO(2) that is refixed by Rubisco can be directly estimated through measurements of g(m) .