Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dany Perocheau is active.

Publication


Featured researches published by Dany Perocheau.


Scientific Reports | 2015

In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters

Suzanne M. K. Buckley; Juliette M. K. M. Delhove; Dany Perocheau; Rajvinder Karda; Ahad A. Rahim; Steven J. Howe; Natalie Ward; Mark A. Birrell; Maria G. Belvisi; Patrick Arbuthnot; Mark R. Johnson; Simon N. Waddington; Tristan R. McKay

The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruses to neonatal rodents as an alternative to the existing technology of generating germline transgenic light producing rodents. At this age, neonates acquire immune tolerance to the conditionally responsive luciferase reporter. This simple and transferrable procedure permits surrogate quantitation of transcription factor activity over the lifetime of the animal. We show principal efficacy by temporally quantifying NFκB activity in the brain, liver and lungs of somatotransgenic reporter mice subjected to lipopolysaccharide (LPS)-induced inflammation. This response is ablated in Tlr4−/− mice or when co-administered with the anti-inflammatory glucocorticoid analogue dexamethasone. Furthermore, we show the malleability of this technology by quantifying NFκB-mediated luciferase expression in outbred rats. Finally, we use somatotransgenic bioimaging to longitudinally quantify LPS- and ActivinA-induced upregulation of liver specific glucocorticoid receptor and Smad2/3 reporter constructs in somatotransgenic mice, respectively.


Clinical & Developmental Immunology | 2015

Evidence for Contribution of CD4+CD25+ Regulatory T Cells in Maintaining Immune Tolerance to Human Factor IX following Perinatal Adenovirus Vector Delivery

M Nivsarkar; Suzanne M. K. Buckley; Alan L. Parker; Dany Perocheau; Tristan R. McKay; Ahad A. Rahim; Steven J. Howe; Simon N. Waddington

Following fetal or neonatal gene transfer in mice and other species immune tolerance of the transgenic protein is frequently observed; however the underlying mechanisms remain largely undefined. In this study fetal and neonatal BALB/c mice received adenovirus vector to deliver human factor IX (hFIX) cDNA. The long-term tolerance of hFIX was robust in the face of immune challenge with hFIX protein and adjuvant but was eliminated by simultaneous administration of anti-CD25+ antibody. Naive irradiated BALB/c mice which had received lymphocytes from donors immunised with hFIX developed anti-hFIX antibodies upon immune challenge. Cotransplantation with CD4+CD25+ cells isolated from neonatally tolerized donors decreased the antibody response. In contrast, cotransplantation with CD4+CD25− cells isolated from the same donors increased the antibody response. These data provide evidence that immune tolerance following perinatal gene transfer is maintained by a CD4+CD25+ regulatory population.


Nature Medicine | 2018

Fetal gene therapy for neurodegenerative disease of infants.

Giulia Massaro; Citra Nurfarah Zaini Mattar; Andrew Wong; Ernestas Sirka; Suzanne M. K. Buckley; Bronwen R. Herbert; Stefan Karlsson; Dany Perocheau; Derek Burke; Simon Heales; Angela Richard-Londt; Sebastian Brandner; Mylene Huebecker; David A. Priestman; Frances M. Platt; Kevin Mills; Arijit Biswas; Jonathan D. Cooper; Jerry Chan; Seng H. Cheng; Simon N. Waddington; Ahad A. Rahim

For inherited genetic diseases, fetal gene therapy offers the potential of prophylaxis against early, irreversible and lethal pathological change. To explore this, we studied neuronopathic Gaucher disease (nGD), caused by mutations in GBA. In adult patients, the milder form presents with hepatomegaly, splenomegaly and occasional lung and bone disease; this is managed, symptomatically, by enzyme replacement therapy. The acute childhood lethal form of nGD is untreatable since enzyme cannot cross the blood–brain barrier. Patients with nGD exhibit signs consistent with hindbrain neurodegeneration, including neck hyperextension, strabismus and, often, fatal apnea1. We selected a mouse model of nGD carrying a loxP-flanked neomycin disruption of Gba plus Cre recombinase regulated by the keratinocyte-specific K14 promoter. Exclusive skin expression of Gba prevents fatal neonatal dehydration. Instead, mice develop fatal neurodegeneration within 15 days2. Using this model, fetal intracranial injection of adeno-associated virus (AAV) vector reconstituted neuronal glucocerebrosidase expression. Mice lived for up to at least 18 weeks, were fertile and fully mobile. Neurodegeneration was abolished and neuroinflammation ameliorated. Neonatal intervention also rescued mice but less effectively. As the next step to clinical translation, we also demonstrated the feasibility of ultrasound-guided global AAV gene transfer to fetal macaque brains.In utero GBA gene therapy extends lifespan and provides long-lasting phenotypic amelioration in a mouse model of neuronopathic Gaucher disease. Fetal ultrasound-guided in utero gene vector delivery is also achieved in the non-human primate brain.


Molecular Therapy | 2017

Eliminating HIV-1 Packaging Sequences from Lentiviral Vector Proviruses Enhances Safety and Expedites Gene Transfer for Gene Therapy

Conrad A. Vink; John R. Counsell; Dany Perocheau; Rajvinder Karda; Suzanne M. K. Buckley; Martijn H. Brugman; Melanie Galla; Axel Schambach; Tristan R. McKay; Simon N. Waddington; Steven J. Howe

Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wild-type genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model.


Scientific Reports | 2017

Longitudinal in vivo bioimaging of hepatocyte transcription factor activity following cholestatic liver injury in mice

Juliette M. K. M. Delhove; Suzanne M. K. Buckley; Dany Perocheau; Rajvinder Karda; Patrick Arbuthnot; Neil C. Henderson; Simon N. Waddington; Tristan R. McKay

Molecular mechanisms regulating liver repair following cholestatic injury remain largely unknown. We have combined a mouse model of acute cholestatic liver injury, partial bile duct ligation (pBDL), with a novel longitudinal bioimaging methodology to quantify transcription factor activity during hepatic injury and repair. We administered lentiviral transcription factor activated luciferase/eGFP reporter (TFAR) cassettes to neonatal mice enabling longitudinal TFAR profiling by continued bioimaging throughout the lives of the animals and following pBDL in adulthood. Neonatal intravascular injection of VSV-G pseudotyped lentivirus resulted in almost exclusive transduction of hepatocytes allowing analysis of hepatocyte-specific transcription factor activity. We recorded acute but transient responses with NF-κB and Smad2/3 TFAR whilst our Notch reporter was repressed over the 40 days of evaluation post-pBDL. The bipotent hepatic progenitor cell line, HepaRG, can be directed to differentiate into hepatocytes and biliary epithelia. We found that forced expression of the Notch inhibitor NUMB in HepaRG resulted in enhanced hepatocyte differentiation and proliferation whereas over-expressing the Notch agonist JAG1 resulted in biliary epithelial differentiation. In conclusion, our data demonstrates that hepatocytes rapidly upregulate NF-κB and Smad2/3 activity, whilst repressing Notch signalling. This transcriptional response to cholestatic liver injury likely promotes partial de-differentiation to allow pro-regenerative proliferation of hepatocytes.


Scientific Reports | 2017

Continual conscious bioluminescent imaging in freely moving somatotransgenic mice

Rajvinder Karda; Dany Perocheau; Natalie Suff; Joanne Ng; Juliette M. K. M. Delhove; Suzanne M. K. Buckley; Samantha Richards; John R. Counsell; Henrik Hagberg; Mark R. Johnson; Tristan R. McKay; Simon N. Waddington

Luciferase bioimaging in living animals is increasingly being applied in many fields of biomedical research. Rodent imaging usually involves anaesthetising the animal during data capture, however, the biological consequences of anaesthesia have been largely overlooked. We have evaluated luciferase bioimaging in conscious, unrestrained mice after neonatal intracranial or intravascular administration of lentiviral, luciferase reporter cassettes (biosensors); we present real-time analyses from the first day of life to adulthood. Anaesthetics have been shown to exert both neurotoxic and neuroprotective effects during development and in models of brain injury. Mice subjected to bioimaging after neonatal intracranial or intravascular administration of biosensors, targeting the brain and liver retrospectively showed no significant difference in luciferase expression when conscious or unconscious throughout development. We applied conscious bioimaging to the assessment of NFκB and STAT3 transcription factor activated reporters during the earliest stages of development in living, unrestrained pups. Our data showed unique longitudinal activities for NFκB and STAT3 in the brain of conscious mice. Conscious bioimaging was applied to a neonatal mouse model of cerebral palsy (Hypoxic-Ischaemic Encephalopathy). Imaging of NFκB reporter before and after surgery showed a significant increase in luciferase expression, coinciding with secondary energy failure, in lesioned mice compared to controls.


bioRxiv | 2018

Gene therapy in argininosuccinic aciduria

Julien Baruteau; Dany Perocheau; Joanna Hanley; Eridan Rocha Ferreira; Rajvinder Karda; Jo Ng; Natalie Suff; Ahad A. Rahim; M. Hughes; Blerida Banushi; Helen Prunty; Mariya Hristova; Deborah Ridout; Alex Virasami; Simon Heales; Steven J. Howe; Suzanne M. K. Buckley; Philippa B. Mills; Paul Gissen; Simon N. Waddington

Argininosuccinate lyase (ASL) belongs to the liver-based urea cycle detoxifying ammonia, and the citrulline-nitric oxide cycle synthesising nitric oxide (NO). ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia and a multi-organ disease with neurocognitive impairment. Current therapeutic guidelines aim to control ammonaemia without considering the systemic NO imbalance. Here, we observed a neuronal disease with oxidative/nitrosative stress in ASL-deficient mouse brains. A single systemic injection of gene therapy mediated by an adeno-associated viral vector serotype 8 (AAV8) in adult or neonatal mice demonstrated the long-term correction of the urea cycle and the citrulline-NO cycle in the brain, respectively. The neuronal disease persisted if ammonaemia only was normalised but was dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This was correlated with behavioural improvement and a decrease of the cortical cell death rate. Thus, the cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress not mediated by hyperammonaemia, which is reversed by AAV gene transfer targeting the brain and the liver, acting on two different metabolic pathways via a single vector delivered systemically. This approach provides new hope for hepatocerebral metabolic diseases.Argininosuccinate lyase (ASL) belongs to the liver-based urea cycle detoxifying ammonia, and the citrulline-nitric oxide cycle synthesising nitric oxide (NO). ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia and a multi-organ disease with neurocognitive impairment. Current therapeutic guidelines aim to control ammonaemia without considering the systemic NO imbalance. Here, we observed a neuronal disease with oxidative/nitrosative stress in ASL-deficient mouse brains. A single systemic injection of gene therapy mediated by an adeno-associated viral vector serotype 8 (AAV8) in adult or neonatal mice demonstrated the long-term correction of the urea cycle and the citrulline-NO cycle in the brain, respectively. The neuronal disease persisted if ammonaemia only was normalised but was dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This was correlated with behavioural improvement and a decrease of the cortical cell death rate. Thus, the cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress not mediated by hyperammonaemia, which is reversed by AAV gene transfer targeting the brain and the liver, acting on two different metabolic pathways via a single vector delivered systemically. This approach provides new hope for hepatocerebral metabolic diseases.


Nature Communications | 2018

Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer

Julien Baruteau; Dany Perocheau; Joanna Hanley; Maëlle Lorvellec; Eridan Rocha-Ferreira; Rajvinder Karda; Joanne Ng; Natalie Suff; Juan Antinao Diaz; Ahad A. Rahim; M. Hughes; Blerida Banushi; Helen Prunty; Mariya Hristova; Deborah Ridout; Alex Virasami; Simon Heales; Stewen J. Howe; Suzanne M. K. Buckley; Philippa B. Mills; Paul Gissen; Simon N. Waddington

Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases.Patients with mutations in the ASL gene present with argininosuccinic aciduria characterised by hyperammonaemia and cognitive impairment. Here, the authors show that cerebral disease involves neuronal nitrosative/oxidative stress that is not induced by hyperammonaemia, and that it can be reversed using AAV-ASL directed to liver and brain in mice.


Human Gene Therapy | 2018

Age-related seroprevalence of antibodies against AAV-LK03 in a UK population cohort

Dany Perocheau; Sharon Cunningham; Miss Juhee Lee; Juan Antinao Diaz; Simon N. Waddington; Kimberly Gilmour; Simon Eaglestone; Leszek Lisowski; Adrian J. Thrasher; Ian E. Alexander; Paul Gissen; Julien Baruteau

Recombinant adeno-associated virus (rAAV) vectors are a promising platform for in vivo gene therapy. The presence of neutralizing antibodies (Nab) against AAV capsids decreases cell transduction efficiency and is a common exclusion criterion for participation in clinical trials. Novel engineered capsids are being generated to improve gene delivery to the target cells and facilitate success of clinical trials; however, the prevalence of antibodies against such capsids remains largely unknown. We therefore assessed the seroprevalence of antibodies against a novel synthetic liver-tropic capsid AAV-LK03. We measured seroprevalence of immunoglobulin (Ig)G (i.e., neutralizing and nonneutralizing) antibodies and Nab to AAV-LK03 in a cohort of 323 UK patients (including 260 pediatric) and 52 juvenile rhesus macaques. We also performed comparative analysis of seroprevalence of Nab against wild-type AAV8 and AAV3B capsids. Overall IgG seroprevalence for AAV-LK03 was 39% in human samples. The titer increased with age. Prevalence of Nab was 23%, 35%, and 18% for AAV-LK03, AAV3B, and AAV8, respectively, with the lowest seroprevalence between 3 and 17 years of age for all serotypes. Presence of Nab against AAV-LK03 decreased from 36% in the youngest cohort (birth to 6 months) to 7% in older primary school-age children (9–11 years) and then progressively increased to 54% in late adulthood. Cross-reactivity between serotypes was >60%. Nab seroprevalence in macaques was 62%, 85%, and 40% for AAV-LK03, AAV3B, and AAV8, respectively. When planning for AAV gene therapy clinical trials, knowing the seropositivity of the target population is critical. In the population studied, AAV seroprevalence for AAV serotypes tested was low. However, high cross-reactivity between AAV serotypes remains a barrier for re-injection. Shifts in Nab seroprevalence during the first decade need to be confirmed by longitudinal studies. This possibility suggests that pediatric patients could respond differently to AAV therapy according to age. If late childhood is an ideal age window, intervention at an early age when maternal Nab levels are high may be challenging. Nab-positive children excluded from trials could be rescreened for eligibility at regular intervals because this status may change.


American Journal of Pathology | 2018

Ascending Vaginal Infection Using Bioluminescent Bacteria Evokes Intrauterine Inflammation, Preterm Birth, and Neonatal Brain Injury in Pregnant Mice

Natalie Suff; Rajvinder Karda; Juan Antinao Diaz; Joanne Ng; Julien Baruteau; Dany Perocheau; Mark Tangney; Peter W. Taylor; Donald Peebles; Suzanne M. K. Buckley; Simon N. Waddington

Preterm birth is a serious global health problem and the leading cause of infant death before 5 years of age. At least 40% of cases are associated with infection. The most common way for pathogens to access the uterine cavity is by ascending from the vagina. Bioluminescent pathogens have revolutionized the understanding of infectious diseases. We hypothesized that bioluminescent Escherichia coli can be used to track and monitor ascending vaginal infections. Two bioluminescent strains were studied: E. coli K12 MG1655-lux, a nonpathogenic laboratory strain, and E. coli K1 A192PP-lux2, a pathogenic strain capable of causing neonatal meningitis and sepsis in neonatal rats. On embryonic day 16, mice received intravaginal E. coli K12, E. coli K1, or phosphate-buffered saline followed by whole-body bioluminescent imaging. In both cases, intravaginal delivery of E. coli K12 or E. coli K1 led to bacterial ascension into the uterine cavity, but only E. coli K1 induced preterm parturition. Intravaginal administration of E. coli K1 significantly reduced the proportion of pups born alive compared with E. coli K12 and phosphate-buffered saline controls. However, in both groups of viable pups born after bacterial inoculation, there was evidence of comparable brain inflammation by postnatal day 6. This study ascribes specific mechanisms by which exposure to intrauterine bacteria leads to premature delivery and neurologic inflammation in neonates.

Collaboration


Dive into the Dany Perocheau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajvinder Karda

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald Peebles

University College London

View shared research outputs
Top Co-Authors

Avatar

Joanne Ng

University College London

View shared research outputs
Top Co-Authors

Avatar

Ahad A. Rahim

University College London

View shared research outputs
Top Co-Authors

Avatar

Anna L. David

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge