Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajvinder Karda is active.

Publication


Featured researches published by Rajvinder Karda.


Scientific Reports | 2015

In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters

Suzanne M. K. Buckley; Juliette M. K. M. Delhove; Dany Perocheau; Rajvinder Karda; Ahad A. Rahim; Steven J. Howe; Natalie Ward; Mark A. Birrell; Maria G. Belvisi; Patrick Arbuthnot; Mark R. Johnson; Simon N. Waddington; Tristan R. McKay

The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruses to neonatal rodents as an alternative to the existing technology of generating germline transgenic light producing rodents. At this age, neonates acquire immune tolerance to the conditionally responsive luciferase reporter. This simple and transferrable procedure permits surrogate quantitation of transcription factor activity over the lifetime of the animal. We show principal efficacy by temporally quantifying NFκB activity in the brain, liver and lungs of somatotransgenic reporter mice subjected to lipopolysaccharide (LPS)-induced inflammation. This response is ablated in Tlr4−/− mice or when co-administered with the anti-inflammatory glucocorticoid analogue dexamethasone. Furthermore, we show the malleability of this technology by quantifying NFκB-mediated luciferase expression in outbred rats. Finally, we use somatotransgenic bioimaging to longitudinally quantify LPS- and ActivinA-induced upregulation of liver specific glucocorticoid receptor and Smad2/3 reporter constructs in somatotransgenic mice, respectively.


Stem cell reports | 2016

A Broad Overview and Review of CRISPR-Cas Technology and Stem Cells

Simon N. Waddington; Riccardo Privolizzi; Rajvinder Karda; Helen C. O’Neill

The pinnacle of four decades of research, induced pluripotent stem cells (iPSCs), and genome editing with the advent of clustered, regularly interspaced, short palindromic repeats (CRISPR) now promise to take drug development and regenerative medicine to new levels and to enable the interrogation of disease mechanisms with a hitherto unimaginable level of model fidelity. Autumn 2014 witnessed the first patient receiving iPSCs differentiated into retinal pigmented epithelium to treat macular degeneration. Technologies such as 3D bioprinting may now exploit these advances to manufacture organs in a dish. As enticing as these prospects are, these technologies demand a deeper understanding, which will lead to improvements in their safety and efficacy. For example, precise and more efficient reprogramming for iPSC production is a requisite for wider clinical adoption. Improving awareness of the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) and genomic epigenetic status will contribute to the achievement of these aims. Similarly, increased efficiency, avoidance of off-target effects, and expansion of available target sequences are critical to the uptake of genome editing technology. In this review, we survey the historical development of genetic manipulation and stem cells. We explore the potential of genetic manipulation of iPSCs for in vitro disease modeling, generation of new animal models, and clinical applicability. We highlight the aspects that define CRISPR-Cas as a breakthrough technology, look at gene correction, and consider some important ethical and societal implications of this approach.


Frontiers in Molecular Neuroscience | 2014

Perinatal systemic gene delivery using adeno-associated viral vectors

Rajvinder Karda; Suzanne M. K. Buckley; Citra Nurfarah Zaini Mattar; Joanne Ng; Giulia Massaro; M. Hughes; Manju A. Kurian; Julien Baruteau; Paul Gissen; Jerry Chan; Chiara Bacchelli; Simon N. Waddington; Ahad A. Rahim

Neurodegenerative monogenic diseases often affect tissues and organs beyond the nervous system. An effective treatment would require a systemic approach. The intravenous administration of novel therapies is ideal but is hampered by the inability of such drugs to cross the blood–brain barrier (BBB) and precludes efficacy in the central nervous system. A number of these early lethal intractable diseases also present devastating irreversible pathology at birth or soon after. Therefore, any therapy would ideally be administered during the perinatal period to prevent, stop, or ameliorate disease progression. The concept of perinatal gene therapy has moved a step further toward being a feasible approach to treating such disorders. This has primarily been driven by the recent discoveries that particular serotypes of adeno-associated virus (AAV) gene delivery vectors have the ability to cross the BBB following intravenous administration. Furthermore, safety has been demonstrated after perinatal administration mice and non-human primates. This review focuses on the progress made in using AAV to achieve systemic transduction and what this means for developing perinatal gene therapy for early lethal neurodegenerative diseases.


Molecular Therapy | 2017

Eliminating HIV-1 Packaging Sequences from Lentiviral Vector Proviruses Enhances Safety and Expedites Gene Transfer for Gene Therapy

Conrad A. Vink; John R. Counsell; Dany Perocheau; Rajvinder Karda; Suzanne M. K. Buckley; Martijn H. Brugman; Melanie Galla; Axel Schambach; Tristan R. McKay; Simon N. Waddington; Steven J. Howe

Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wild-type genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model.


Scientific Reports | 2017

Longitudinal in vivo bioimaging of hepatocyte transcription factor activity following cholestatic liver injury in mice

Juliette M. K. M. Delhove; Suzanne M. K. Buckley; Dany Perocheau; Rajvinder Karda; Patrick Arbuthnot; Neil C. Henderson; Simon N. Waddington; Tristan R. McKay

Molecular mechanisms regulating liver repair following cholestatic injury remain largely unknown. We have combined a mouse model of acute cholestatic liver injury, partial bile duct ligation (pBDL), with a novel longitudinal bioimaging methodology to quantify transcription factor activity during hepatic injury and repair. We administered lentiviral transcription factor activated luciferase/eGFP reporter (TFAR) cassettes to neonatal mice enabling longitudinal TFAR profiling by continued bioimaging throughout the lives of the animals and following pBDL in adulthood. Neonatal intravascular injection of VSV-G pseudotyped lentivirus resulted in almost exclusive transduction of hepatocytes allowing analysis of hepatocyte-specific transcription factor activity. We recorded acute but transient responses with NF-κB and Smad2/3 TFAR whilst our Notch reporter was repressed over the 40 days of evaluation post-pBDL. The bipotent hepatic progenitor cell line, HepaRG, can be directed to differentiate into hepatocytes and biliary epithelia. We found that forced expression of the Notch inhibitor NUMB in HepaRG resulted in enhanced hepatocyte differentiation and proliferation whereas over-expressing the Notch agonist JAG1 resulted in biliary epithelial differentiation. In conclusion, our data demonstrates that hepatocytes rapidly upregulate NF-κB and Smad2/3 activity, whilst repressing Notch signalling. This transcriptional response to cholestatic liver injury likely promotes partial de-differentiation to allow pro-regenerative proliferation of hepatocytes.


Scientific Reports | 2017

Continual conscious bioluminescent imaging in freely moving somatotransgenic mice

Rajvinder Karda; Dany Perocheau; Natalie Suff; Joanne Ng; Juliette M. K. M. Delhove; Suzanne M. K. Buckley; Samantha Richards; John R. Counsell; Henrik Hagberg; Mark R. Johnson; Tristan R. McKay; Simon N. Waddington

Luciferase bioimaging in living animals is increasingly being applied in many fields of biomedical research. Rodent imaging usually involves anaesthetising the animal during data capture, however, the biological consequences of anaesthesia have been largely overlooked. We have evaluated luciferase bioimaging in conscious, unrestrained mice after neonatal intracranial or intravascular administration of lentiviral, luciferase reporter cassettes (biosensors); we present real-time analyses from the first day of life to adulthood. Anaesthetics have been shown to exert both neurotoxic and neuroprotective effects during development and in models of brain injury. Mice subjected to bioimaging after neonatal intracranial or intravascular administration of biosensors, targeting the brain and liver retrospectively showed no significant difference in luciferase expression when conscious or unconscious throughout development. We applied conscious bioimaging to the assessment of NFκB and STAT3 transcription factor activated reporters during the earliest stages of development in living, unrestrained pups. Our data showed unique longitudinal activities for NFκB and STAT3 in the brain of conscious mice. Conscious bioimaging was applied to a neonatal mouse model of cerebral palsy (Hypoxic-Ischaemic Encephalopathy). Imaging of NFκB reporter before and after surgery showed a significant increase in luciferase expression, coinciding with secondary energy failure, in lesioned mice compared to controls.


bioRxiv | 2016

Generation of light-producing somatic-transgenic mice using adeno-associated virus vectors

Rajvinder Karda; Dp Perocheau; Smk Buckley; Jmkm Delhove; M. Hughes; Ahad A. Rahim; Johnson; Joanne Ng; Natalie Suff; Np Martin; Els Henckaerts; Tristan R. McKay; Simon N. Waddington

We have previously designed a library of lentiviral vectors to generate somatic-transgenic rodents to monitor signalling pathways in diseased organs using whole-body bioluminescence imaging, in conscious, freely moving rodents. We have now expanded this technology to adeno-associated viral vectors. We first explored bio-distribution by assessing GFP expression after neonatal intravenous delivery of AAV8. We observed widespread gene expression in, central and peripheral nervous system, liver, kidney and skeletal muscle. Next, we selected a constitutive SFFV promoter and NFκB binding sequence for bioluminescence and biosensor evaluation. An intravenous injection of AAV8 containing firefly luciferase and eGFP under transcriptional control of either element resulted in strong and persistent widespread luciferase expression. A single dose of LPS-induced a 10-fold increase in luciferase expression in AAV8-NFκB mice and immunohistochemistry revealed GFP expression in cells of astrocytic and neuronal morphology. Importantly, whole-body bioluminescence persisted up to 240 days. To further restrict biosensor activity to the CNS, we performed intracerebroventricular injection of each vector. We observed greater restriction of bioluminescence to the head and spine with both vectors. Immunohistochemistry revealed strongest expression in cells of neuronal morphology. LPS administration stimulated a 4-fold increase over baseline bioluminescence. We have validated a novel biosensor technology in an AAV system by using an NFκB response element and revealed its potential to monitor signalling pathway in a non-invasive manner using a model of LPS-induced inflammation. This technology employs the 3R’s of biomedical animal research, complements existing germline-transgenic models and may be applicable to other rodent disease models with the use of different response elements.


bioRxiv | 2018

Gene therapy in argininosuccinic aciduria

Julien Baruteau; Dany Perocheau; Joanna Hanley; Eridan Rocha Ferreira; Rajvinder Karda; Jo Ng; Natalie Suff; Ahad A. Rahim; M. Hughes; Blerida Banushi; Helen Prunty; Mariya Hristova; Deborah Ridout; Alex Virasami; Simon Heales; Steven J. Howe; Suzanne M. K. Buckley; Philippa B. Mills; Paul Gissen; Simon N. Waddington

Argininosuccinate lyase (ASL) belongs to the liver-based urea cycle detoxifying ammonia, and the citrulline-nitric oxide cycle synthesising nitric oxide (NO). ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia and a multi-organ disease with neurocognitive impairment. Current therapeutic guidelines aim to control ammonaemia without considering the systemic NO imbalance. Here, we observed a neuronal disease with oxidative/nitrosative stress in ASL-deficient mouse brains. A single systemic injection of gene therapy mediated by an adeno-associated viral vector serotype 8 (AAV8) in adult or neonatal mice demonstrated the long-term correction of the urea cycle and the citrulline-NO cycle in the brain, respectively. The neuronal disease persisted if ammonaemia only was normalised but was dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This was correlated with behavioural improvement and a decrease of the cortical cell death rate. Thus, the cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress not mediated by hyperammonaemia, which is reversed by AAV gene transfer targeting the brain and the liver, acting on two different metabolic pathways via a single vector delivered systemically. This approach provides new hope for hepatocerebral metabolic diseases.Argininosuccinate lyase (ASL) belongs to the liver-based urea cycle detoxifying ammonia, and the citrulline-nitric oxide cycle synthesising nitric oxide (NO). ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia and a multi-organ disease with neurocognitive impairment. Current therapeutic guidelines aim to control ammonaemia without considering the systemic NO imbalance. Here, we observed a neuronal disease with oxidative/nitrosative stress in ASL-deficient mouse brains. A single systemic injection of gene therapy mediated by an adeno-associated viral vector serotype 8 (AAV8) in adult or neonatal mice demonstrated the long-term correction of the urea cycle and the citrulline-NO cycle in the brain, respectively. The neuronal disease persisted if ammonaemia only was normalised but was dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This was correlated with behavioural improvement and a decrease of the cortical cell death rate. Thus, the cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress not mediated by hyperammonaemia, which is reversed by AAV gene transfer targeting the brain and the liver, acting on two different metabolic pathways via a single vector delivered systemically. This approach provides new hope for hepatocerebral metabolic diseases.


Nature Communications | 2018

Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer

Julien Baruteau; Dany Perocheau; Joanna Hanley; Maëlle Lorvellec; Eridan Rocha-Ferreira; Rajvinder Karda; Joanne Ng; Natalie Suff; Juan Antinao Diaz; Ahad A. Rahim; M. Hughes; Blerida Banushi; Helen Prunty; Mariya Hristova; Deborah Ridout; Alex Virasami; Simon Heales; Stewen J. Howe; Suzanne M. K. Buckley; Philippa B. Mills; Paul Gissen; Simon N. Waddington

Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases.Patients with mutations in the ASL gene present with argininosuccinic aciduria characterised by hyperammonaemia and cognitive impairment. Here, the authors show that cerebral disease involves neuronal nitrosative/oxidative stress that is not induced by hyperammonaemia, and that it can be reversed using AAV-ASL directed to liver and brain in mice.


Molecular therapy. Nucleic acids | 2018

Foamy Virus Vectors Transduce Visceral Organs and Hippocampal Structures following In Vivo Delivery to Neonatal Mice

John R. Counsell; Rajvinder Karda; Juan Antinao Diaz; Louise Carey; Tatiana Wiktorowicz; Suzanne M. K. Buckley; Shima Ameri; Joanne Ng; Julien Baruteau; Filipa Almeida; Rohan de Silva; Roberto Simone; Eleonora Lugarà; Gabriele Lignani; Dirk Lindemann; Axel Rethwilm; Ahad A. Rahim; Simon N. Waddington; Steven J. Howe

Viral vectors are rapidly being developed for a range of applications in research and gene therapy. Prototype foamy virus (PFV) vectors have been described for gene therapy, although their use has mainly been restricted to ex vivo stem cell modification. Here we report direct in vivo transgene delivery with PFV vectors carrying reporter gene constructs. In our investigations, systemic PFV vector delivery to neonatal mice gave transgene expression in the heart, xiphisternum, liver, pancreas, and gut, whereas intracranial administration produced brain expression until animals were euthanized 49 days post-transduction. Immunostaining and confocal microscopy analysis of injected brains showed that transgene expression was highly localized to hippocampal architecture despite vector delivery being administered to the lateral ventricle. This was compared with intracranial biodistribution of lentiviral vectors and adeno-associated virus vectors, which gave a broad, non-specific spread through the neonatal mouse brain without regional localization, even when administered at lower copy numbers. Our work demonstrates that PFV can be used for neonatal gene delivery with an intracranial expression profile that localizes to hippocampal neurons, potentially because of the mitotic status of the targeted cells, which could be of use for research applications and gene therapy of neurological disorders.

Collaboration


Dive into the Rajvinder Karda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tristan R. McKay

Manchester Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanne Ng

University College London

View shared research outputs
Top Co-Authors

Avatar

Dany Perocheau

University College London

View shared research outputs
Top Co-Authors

Avatar

Ahad A. Rahim

University College London

View shared research outputs
Top Co-Authors

Avatar

Natalie Suff

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dp Perocheau

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge