Dao-Hong Lin
New York Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dao-Hong Lin.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Dimin Li; Zhijian Wang; Peng Sun; Yan Jin; Dao-Hong Lin; Steven C. Hebert; Gerhard Giebisch; Wen-Hui Wang
The kidney plays a key role in maintaining potassium (K) homeostasis. K excretion is determined by the balance between K secretion and absorption in distal tubule segments such as the connecting tubule and cortical collecting duct. K secretion takes place by K entering principal cells (PC) from blood side through Na+, K+-ATPase and being secreted into the lumen via both ROMK-like small-conductance K (SK) channels and Ca2+-activated big-conductance K (BK) channels. K reabsorption occurs by stimulation of apical K/H-ATPase and inhibition of K recycling across the apical membrane in intercalated cells (IC). The role of ROMK channels in K secretion is well documented. However, the importance of BK channels in mediating K secretion is incompletely understood. It has been shown that their activity increases with high tubule flow rate and augmented K intake. However, BK channels have a low open probability and are mainly located in IC, which lack appropriate transporters for effective K secretion. Here we demonstrate that inhibition of ERK and P38 MAPKs stimulates BK channels in both PC and IC in the cortical collecting duct and that changes in K intake modulate their activity. Under control conditions, BK channel activity in PC was low but increased significantly by inhibition of both ERK and P38. Blocking MAPKs also increased channel open probability of BK in IC and thereby it may affect K backflux and net K absorption Thus, modulation of ERK and P38 MAPK activity is involved in controlling net K secretion in the distal nephron.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Chengbiao Zhang; Lijun Wang; Junhui Zhang; Xiao-Tong Su; Dao-Hong Lin; Ute I. Scholl; Gerhard Giebisch; Richard P. Lifton; Wen-Hui Wang
Significance Loss of function mutations in the potassium channel KCNJ10 causes a salt-wasting syndrome. The phenotype resembles Gitelman syndrome, which results from loss of sodium chloride transport along the distal convoluted tubule (DCT), but the mechanisms involved are not clear. Here, we perform experiments in the kidney from Kcnj10 knockout mice and demonstrate that Kcnj10 is a main contributor to the basolateral potassium conductance in the DCT and that the potassium channel activity regulates the expression of ste20-related proline–alanine-rich kinase (SPAK) and determines Na-Cl cotransporter (NCC) expression. Our study suggests the possibility that the regulation of basolateral Kcnj10 activity in the DCT may be the first step in response to a variety of physiological stimuli for initiating SPAK-WNK-dependent modulation of NCC expression in the kidney. The renal phenotype induced by loss-of-function mutations of inwardly rectifying potassium channel (Kir), Kcnj10 (Kir4.1), includes salt wasting, hypomagnesemia, metabolic alkalosis and hypokalemia. However, the mechanism by which Kir.4.1 mutations cause the tubulopathy is not completely understood. Here we demonstrate that Kcnj10 is a main contributor to the basolateral K conductance in the early distal convoluted tubule (DCT1) and determines the expression of the apical Na-Cl cotransporter (NCC) in the DCT. Immunostaining demonstrated Kcnj10 and Kcnj16 were expressed in the basolateral membrane of DCT, and patch-clamp studies detected a 40-pS K channel in the basolateral membrane of the DCT1 of p8/p10 wild-type Kcnj10+/+ mice (WT). This 40-pS K channel is absent in homozygous Kcnj10−/− (knockout) mice. The disruption of Kcnj10 almost completely eliminated the basolateral K conductance and decreased the negativity of the cell membrane potential in DCT1. Moreover, the lack of Kcnj10 decreased the basolateral Cl conductance, inhibited the expression of Ste20-related proline–alanine-rich kinase and diminished the apical NCC expression in DCT. We conclude that Kcnj10 plays a dominant role in determining the basolateral K conductance and membrane potential of DCT1 and that the basolateral K channel activity in the DCT determines the apical NCC expression possibly through a Ste20-related proline–alanine-rich kinase-dependent mechanism.
Hypertension | 2007
De-Li Dong; Yan Zhang; Dao-Hong Lin; Jun Chen; Susann Patschan; Michael S. Goligorsky; Alberto Nasjletti; Baofeng Yang; Wen-Hui Wang
We used the whole-cell patch-clamp technique to study K channels in the human umbilical vein endothelial cells and identified a 201 pS K channel, which was blocked by tetraethylammonium and iberiotoxin but not by TRAM34 and apamin. This suggests that the Ca2+-activated big-conductance K channel (BK) is expressed in endothelial cells. Application of carbon monoxide (CO) or tricarbonylchloro(glycinato)ruthenium(II), a water soluble CO donor, stimulated the BK channels. Moreover, application of hemin, a substrate of heme oxygenase, mimicked the effect of CO and increased the BK channel activity. The stimulatory effect of hemin was significantly diminished by tin mesoporphyrin, an inhibitor of heme oxygenase. To determine whether the stimulatory effect of CO on the BK channel was mediated by NO and the cGMP-dependent pathway, we examined the effect of CO on BK channels in cells treated with, NG-nitro-l-arginine methyl ester, 1H(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one, an inhibitor of soluble guanylate cyclase, or KT5823, an inhibitor of protein kinase G. Addition of either diethylamine NONOate or sodium nitroprusside significantly increased BK channel activity. Inhibition of endogenous NO synthesis with NG-nitro-l-arginine methyl ester, blocking soluble guanylate cyclase or protein kinase G, delayed but did not prevent the CO-induced activation of BK channels. Finally, application of an antioxidant agent, ebselen, had no effect on CO-mediated stimulation of BK channels in human umbilical vein endothelial cells. We conclude that BK channels are expressed in human umbilical vein endothelial cells and that they are activated by both CO and NO. CO activates BK channels directly, as well as via a mechanism involving NO or the cGMP-dependent pathway.
Journal of The American Society of Nephrology | 2009
Peng Sun; Wen Liu; Dao-Hong Lin; Peng Yue; Rowena Kemp; Lisa M. Satlin; Wen-Hui Wang
The cortical collecting duct (CCD), which is involved in renal potassium (K) excretion, expresses cytochrome P450 (CYP)-epoxygenase. Here, we examined the effect of high dietary K on renal expression of CYP2C23 and CYP2J2 in the rat, as well as the role of CYP-epoxygenase-dependent metabolism of arachidonic acid in the regulation of Ca(2+)-activated big-conductance K (BK) channels. By Western blot analysis, high dietary K stimulated the expression of CYP2C23 but not CYP2J2 and increased 11,12-epoxyeicosatrienoic acid (11,12-EET) levels in isolated rat CCD tubules. Application of arachidonic acid increased BK channel activity, and this occurred to a greater extent in rats on a high-K diet compared with a normal-K diet. This effect was unlikely due to arachidonic acid-induced changes in membrane fluidity, because 11,14,17-eicosatrienoic acid did not alter BK channel activity. Inhibiting CYP-epoxygenase but not cyclooxygenase- or CYP-omega-hydroxylase-dependent pathways completely abolished the stimulatory effect of arachidonic acid on BK channel activity. In addition, application of 11,12-EET mimicked the effect of arachidonic acid on BK channel activity, even in the presence of CYP-epoxygenase inhibition. This effect seemed specific to 11,12-EET, because both 8,9- and 14,15-EET failed to stimulate BK channels. Finally, inhibition of CYP-epoxygenase abolished iberiotoxin-sensitive and flow-stimulated but not basal net K secretion in isolated microperfused CCD. In conclusion, high dietary K stimulates the renal CYP-epoxygenase pathway, which plays an important role in activating BK channels and flow-stimulated K secretion in the CCD.
Kidney International | 2011
Peng Yue; Peng Sun; Dao-Hong Lin; Chunyang Pan; Wenming Xing; Wen-Hui Wang
ROMK1 channels are located in the apical membrane of the connecting tubule and cortical collecting duct and mediate the potassium secretion during normal dietary intake. We used a perforated whole-cell patch clamp to explore the effect of angiotensin II on these channels in HEK293 cells transfected with green fluorescent protein (GFP)-ROMK1. Angiotensin II inhibited ROMK1 channels in a dose-dependent manner, an effect abolished by losartan or by inhibition of protein kinase C. Furthermore, angiotensin II stimulated a protein kinase C-sensitive phosphorylation of tyrosine 416 within c-Src. Inhibition of protein tyrosine kinase attenuated the effect of angiotensin II. Western blot studies suggested that angiotensin II inhibited ROMK1 channels by enhancing its tyrosine phosphorylation, a notion supported by angiotensin IIs failure to inhibit potassium channels in cells transfected with the ROMK1 tyrosine mutant (R1Y337A). However, angiotensin II restored the with-no-lysine kinase-4 (WNK4)-induced inhibition of R1Y337A in the presence of serum-glucocorticoids-induced kinase 1 (SGK1), which reversed the inhibitory effect of WNK4 on ROMK1. Moreover, protein tyrosine kinase inhibition abolished the angiotensin II-induced restoration of WNK4-mediated inhibition of ROMK1. Angiotensin II inhibited ROMK channels in the cortical collecting duct of rats on a low sodium diet, an effect blocked by protein tyrosine kinase inhibition. Thus, angiotensin II inhibits ROMK channels by two mechanisms: increasing tyrosine phosphorylation of the channel and synergizing the WNK4-induced inhibition. Hence, angiotensin II may have an important role in suppressing potassium secretion during volume depletion.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Peng Yue; Dao-Hong Lin; Chunyang Pan; Qiang Leng; Gerhard Giebisch; Richard P. Lifton; Wen-Hui Wang
WNK4 (with no lysine kinase 4) inhibits ROMK channel activity in the distal nephron by stimulating clathrin-dependent endocytosis, an effect attenuated by SGK1 (serum-glucocorticoids-induced kinase)-mediated phosphorylation. It has been suggested that increased ROMK activity because of SGK1-mediated inhibition of WNK4 plays a role in promoting renal K secretion in response to elevated serum K or high K (HK) intake. In contrast, intravascular volume depletion also increases SGK1 activity but fails to stimulate ROMK channels and K secretion. Because HK intake decreases Src family protein tyrosine kinase (PTK) activity an inhibitor of ROMK channels, it is possible that Src family PTK may modulate the effects of SGK1 on WNK4. Here, we show that c-Src prevents SGK1 from attenuating WNK4s inhibition of ROMK activity. This effect of c-Src was WNK4-dependent because c-Src had no effect on ROMK harboring mutation at the site of c-Src phosphorylation (R1Y337A) in the absence of WNK4. Moreover, expression c-Src diminished the SGK1-mediated increase in serine phosphorylation of WNK4, suggesting that c-Src enhances WNK4-mediated inhibition of ROMK channels by suppressing the SGK1-induced phosphorylation. This notion is also supported by the observation that c-Src was not able to modulate the interaction between SGK1 and WNK4 mutants (WNK4S1169A or WNK4S1169D) in which an SGK1-phosphorylation site (serine 1169) was mutated by alanine or aspartate. We conclude that c-Src inhibits SGK1-mediated phosphorylation hereby restoring the WNK4-mediated inhibition of ROMK channels thus suppressing K secretion.
Journal of Immunology | 2009
Zhi-Qin Wang; Wenming Xing; Hua‐Hua Fan; Ke-Sheng Wang; Hai-Kuo Zhang; Qin-Wan Wang; Jia Qi; Hong-Meng Yang; Jie Yang; Yana Ren; Shu-Jian Cui; Xin Zhang; Feng Liu; Dao-Hong Lin; Wen-Hui Wang; Michael K. Hoffmann; Ze-Guang Han
LPS is an immunostimulatory component of Gram-negative bacteria. Acting on the immune system in a systemic fashion, LPS exposes the body to the hazard of septic shock. In this study we report that cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2/Crispld2; human and mouse/rat versions, respectively), expressed by multitissues and leukocytes, is a novel LPS-binding protein. As a serum protein, median CRISPLD2 concentrations in health volunteers and umbilical cord blood samples are 607 μg/ml and 290 μg/ml, respectively. Human peripheral blood granulocytes and mononuclear cells including monocytes, NK cells, and T cells spontaneously release CRISPLD2 (range, 0.2–0.9 μg/ml) and enhance CRISPLD2 secretion (range, 1.5–4.2 μg/ml) in response to stimulation of both LPS and humanized anti-human TLR4-IgA Ab in vitro. CRISPLD2 exhibits significant LPS binding affinity similar to that of soluble CD14, prevents LPS binding to target cells, reduces LPS-induced TNF-α and IL-6 production, and protects mice against endotoxin shock. In in vivo experiments, serum Crispld2 concentrations increased in response to a nontoxic dose of LPS and correlated negatively with LPS lethality, suggesting that CRISPLD2 serum concentrations not only are indicators of the degree of a body’s exposure to LPS but also reflect an individual’s LPS sensitivity.
Journal of The American Society of Nephrology | 2006
Elisa Babilonia; Dimin Li; Zhijian Wang; Peng Sun; Dao-Hong Lin; Yan Jin; Wen-Hui Wang
It was demonstrated previously that low dietary potassium (K) intake stimulates Src family protein tyrosine kinase (PTK) expression via a superoxide-dependent signaling. This study explored the role of mitogen-activated protein kinase (MAPK) in mediating the effect of superoxide anions on PTK expression and ROMK (Kir 1.1) channel activity. Western blot analysis demonstrated that low K intake significantly increased the phosphorylation of P38 MAPK (P38) and extracellular signal-regulated kinase (ERK) but had no effect on phosphorylation of c-JUN N-terminus kinase in renal cortex and outer medulla. The stimulatory effect of low K intake on P38 and ERK was abolished by treatment of rats with tempol. The possibility that increases in superoxide and related products that are induced by low K intake were responsible for stimulating phosphorylation of P38 and ERK also was supported by the finding that application of H(2)O(2) increased the phosphorylation of ERK and P38 in the cultured mouse collecting duct cells. Simultaneous blocking of ERK and P38 completely abolished the effect of H(2)O(2) on c-Src expression in mouse collecting duct cells. For determination of the role of P38 and ERK in the regulation of ROMK-like small-conductance K (SK) channels, the patch-clamp technique was used to study the effect of inhibiting P38 and ERK on SK channels in the cortical collecting duct from rats that were on a control K diet (1.1%) and on a K-deficient diet for 1 d. Inhibition of ERK, c-JUN N-terminus kinase, or P38 alone had no effect on SK channels. In contrast, simultaneous inhibition of P38 and ERK significantly increased channel activity. The effect of inhibiting MAPK on SK channels was not affected in the presence of herbimycin A, a PTK inhibitor, and was larger in rats that were on a K-deficient diet than in rats that were on a normal-K diet. However, the stimulatory effect of inhibiting ERK and P38 on SK was absent in the cortical collecting duct that was treated with colchicine. It is concluded that low K intake-induced increases in superoxide levels are responsible for stimulation of P38 and ERK and that MAPK inhibit the SK channels by stimulating PTK expression and via a PTK-independent mechanism.
Journal of The American Society of Nephrology | 2007
Elisa Babilonia; Dao-Hong Lin; Yan Zhang; Yuan Wei; Peng Yue; Wen-Hui Wang
Previous study has demonstrated that superoxide and the related products are involved in mediating the effect of low K intake on renal K secretion and ROMK channel activity in the cortical collecting duct (CCD). This study investigated the role of gp91(phox)-containing NADPH oxidase (NOXII) in mediating the effect of low K intake on renal K excretion and ROMK channel activity in gp91(-/-) mice. K depletion increased superoxide levels, phosphorylation of c-Jun, expression of c-Src, and tyrosine phosphorylation of ROMK in renal cortex and outer medulla in wild-type (WT) mice. In contrast, tempol treatment in WT mice abolished whereas deletion of gp91 significantly attenuated the effect of low K intake on superoxide production, c-Jun phosphorylation, c-Src expression, and tyrosine phosphorylation of ROMK. Patch-clamp experiments demonstrated that low K intake decreased mean product of channel number (N) and open probability (P) (NP(o)) of ROMK channels from 1.1 to 0.4 in the CCD. However, the effect of low K intake on ROMK channel activity was significantly attenuated in the CCD from gp91(-/-) mice and completely abolished by tempol treatment. Immunocytochemical staining also was used to examine the ROMK distribution in WT, gp91(-/-), and WT mice with tempol treatment in response to K restriction. K restriction decreased apical staining of ROMK in WT mice. In contrast, a sharp apical ROMK staining was observed in the tempol-treated WT or gp91(-/-) mice. Metabolic cage study further showed that urinary K loss is significantly higher in gp91(-/-) mice than in WT mice. It is concluded that superoxide anions play a key role in suppressing K secretion during K restriction and that NOXII is involved in mediating the effect of low K intake on renal K secretion and ROMK channel activity.
Journal of Biological Chemistry | 2013
Chengbiao Zhang; Lijun Wang; Sherin Thomas; Kemeng Wang; Dao-Hong Lin; Jesse Rinehart; Wen-Hui Wang
Background: KCNJ10 is a key component of the basolateral K channels in DCT. Results: SFK phosphorylates KCNJ10 at Tyr9, and inhibition of SFK decreases basolateral K channel activity in DCT. Conclusion: SFK stimulates the basolateral K channels in DCT by phosphorylating KCNJ10. Significance: Tyrosine phosphorylation of KCNJ10 plays a role in regulating membrane transport in DCT. The loss of function of the basolateral K channels in the distal nephron causes electrolyte imbalance. The aim of this study is to examine the role of Src family protein tyrosine kinase (SFK) in regulating K channels in the basolateral membrane of the mouse initial distal convoluted tubule (DCT1). Single-channel recordings confirmed that the 40-picosiemen (pS) K channel was the only type of K channel in the basolateral membrane of DCT1. The suppression of SFK reversibly inhibited the basolateral 40-pS K channel activity in cell-attached patches and decreased the Ba2+-sensitive whole-cell K currents in DCT1. Inhibition of SFK also shifted the K reversal potential from −65 to −43 mV, suggesting a role of SFK in determining the membrane potential in DCT1. Western blot analysis showed that KCNJ10 (Kir4.1), a key component of the basolateral 40-pS K channel in DCT1, was a tyrosine-phosphorylated protein. LC/MS analysis further confirmed that SFK phosphorylated KCNJ10 at Tyr8 and Tyr9. The single-channel recording detected the activity of a 19-pS K channel in KCNJ10-transfected HEK293T cells and a 40-pS K channel in the cells transfected with KCNJ10+KCNJ16 (Kir.5.1) that form a heterotetramer in the basolateral membrane of the DCT. Mutation of Tyr9 did not alter the channel conductance of the homotetramer and heterotetramer. However, it decreased the whole-cell K currents, the probability of finding K channels, and surface expression of KCNJ10 in comparison to WT KCNJ10. We conclude that SFK stimulates the basolateral K channel activity in DCT1, at least partially, by phosphorylating Tyr9 on KCNJ10. We speculate that the modulation of tyrosine phosphorylation of KCNJ10 should play a role in regulating membrane transport function in DCT1.