Wen Hui Wang
New York Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wen Hui Wang.
Cell Metabolism | 2015
Andrew S. Terker; Chong Zhang; James A. McCormick; Rebecca Lazelle; Chengbiao Zhang; Nicholas P. Meermeier; Dominic A. Siler; Hae J. Park; Yi Fu; David M. Cohen; Alan M. Weinstein; Wen Hui Wang; Chao Ling Yang; David H. Ellison
Dietary potassium deficiency, common in modern diets, raises blood pressure and enhances salt sensitivity. Potassium homeostasis requires a molecular switch in the distal convoluted tubule (DCT), which fails in familial hyperkalemic hypertension (pseudohypoaldosteronism type 2), activating the thiazide-sensitive NaCl cotransporter, NCC. Here, we show that dietary potassium deficiency activates NCC, even in the setting of high salt intake, thereby causing sodium retention and a rise in blood pressure. The effect is dependent on plasma potassium, which modulates DCT cell membrane voltage and, in turn, intracellular chloride. Low intracellular chloride stimulates WNK kinases to activate NCC, limiting potassium losses, even at the expense of increased blood pressure. These data show that DCT cells, like adrenal cells, sense potassium via membrane voltage. In the DCT, hyperpolarization activates NCC via WNK kinases, whereas in the adrenal gland, it inhibits aldosterone secretion. These effects work in concert to maintain potassium homeostasis.
The Journal of General Physiology | 2004
Yuan Wei; Dao Hong Lin; Rowena Kemp; Ganesh S S Yaddanapudi; Alberto Nasjletti; John R. Falck; Wen Hui Wang
We used the patch-clamp technique to study the effect of arachidonic acid (AA) on epithelial Na channels (ENaC) in the rat cortical collecting duct (CCD). Application of 10 μM AA decreased the ENaC activity defined by NPo from 1.0 to 0.1. The dose–response curve of the AA effect on ENaC shows that 2 μM AA inhibited the ENaC activity by 50%. The effect of AA on ENaC is specific because neither 5,8,11,14-eicosatetraynoic acid (ETYA), a nonmetabolized analogue of AA, nor 11,14,17-eicosatrienoic acid mimicked the inhibitory effect of AA on ENaC. Moreover, inhibition of either cyclooxygenase (COX) with indomethacin or cytochrome P450 (CYP) ω-hydroxylation with N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) failed to abolish the effect of AA on ENaC. In contrast, the inhibitory effect of AA on ENaC was absent in the presence of N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide (MS-PPOH), an agent that inhibits CYP-epoxygenase activity. The notion that the inhibitory effect of AA is mediated by CYP-epoxygenase–dependent metabolites is also supported by the observation that application of 200 nM 11,12-epoxyeicosatrienoic acid (EET) inhibited ENaC in the CCD. In contrast, addition of 5,6-, 8,9-, or 14,15-EET failed to decrease ENaC activity. Also, application of 11,12-EET can still reduce ENaC activity in the presence of MS-PPOH, suggesting that 11,12-EET is a mediator for the AA-induced inhibition of ENaC. Furthermore, gas chromatography mass spectrometry analysis detected the presence of 11,12-EET in the CCD and CYP2C23 is expressed in the principal cells of the CCD. We conclude that AA inhibits ENaC activity in the CCD and that the effect of AA is mediated by a CYP-epoxygenase–dependent metabolite, 11,12-EET.
Journal of The American Society of Nephrology | 2017
Catherina A. Cuevas; Xiao Tong Su; Ming Xiao Wang; Andrew S. Terker; Dao Hong Lin; James A. McCormick; Chao Ling Yang; David H. Ellison; Wen Hui Wang
The mammalian distal convoluted tubule (DCT) makes an important contribution to potassium homeostasis by modulating NaCl transport. The thiazide-sensitive Na+/Cl- cotransporter (NCC) is activated by low potassium intake and by hypokalemia. Coupled with suppression of aldosterone secretion, activation of NCC helps to retain potassium by increasing electroneutral NaCl reabsorption, therefore reducing Na+/K+ exchange. Yet the mechanisms by which DCT cells sense plasma potassium concentration and transmit the information to the apical membrane are not clear. Here, we tested the hypothesis that the potassium channel Kir4.1 is the potassium sensor of DCT cells. We generated mice in which Kir4.1 could be deleted in the kidney after the mice are fully developed. Deletion of Kir4.1 in these mice led to moderate salt wasting, low BP, and profound potassium wasting. Basolateral membranes of DCT cells were depolarized, nearly devoid of conductive potassium transport, and unresponsive to plasma potassium concentration. Although renal WNK4 abundance increased after Kir4.1 deletion, NCC abundance and function decreased, suggesting that membrane depolarization uncouples WNK kinases from NCC. Together, these results indicate that Kir4.1 mediates potassium sensing by DCT cells and couples this signal to apical transport processes.
Journal of The American Society of Nephrology | 2010
Peng Sun; Dao Hong Lin; Peng Yue; Houli Jiang; Katherine H. Gotlinger; Michal Laniado Schwartzman; John R. Falck; Mohan Goli; Wen Hui Wang
High dietary potassium stimulates the renal expression of cytochrome P450 (CYP) epoxygenase 2C23, which metabolizes arachidonic acid (AA). Because the AA metabolite 11,12-epoxyeicosatrienoic acid (11,12-EET) can inhibit the epithelial sodium channel (ENaC) in the cortical collecting duct, we tested whether dietary potassium modulates ENaC function. High dietary potassium increased 11,12-EET in the isolated cortical collecting duct, an effect mimicked by inhibiting the angiotensin II type I receptor with valsartan. In patch-clamp experiments, a high potassium intake or treatment with valsartan enhanced AA-induced inhibition of ENaC, an effect mediated by a CYP-epoxygenase-dependent pathway. Moreover, high dietary potassium and valsartan each augmented the inhibitory effect of 11,12-EET on ENaC. Liquid chromatography/mass spectrometry showed that the rate of EET conversion to dihydroxyeicosatrienoic acids (DHET) was lower in renal tissue obtained from rats on a high-potassium diet than from those on a control diet, but this was not a result of altered expression of soluble epoxide hydrolase (sEH). Instead, suppression of sEH activity seemed to be responsible for the 11,12-EET-mediated enhanced inhibition of ENaC in animals on a high-potassium diet. Patch-clamp experiments demonstrated that 11,12-DHET was a weak inhibitor of ENaC compared with 11,12-EET, whereas 8,9- and 14,15-DHET were not. Furthermore, inhibition of sEH enhanced the 11,12-EET-induced inhibition of ENaC similar to high dietary potassium. In conclusion, high dietary potassium enhances the inhibitory effect of AA and 11,12-EET on ENaC by increasing CYP epoxygenase activity and decreasing sEH activity, respectively.
American Journal of Physiology-renal Physiology | 2008
Zhijian Wang; Yuan Wei; John R. Falck; Krishnam Raju Atcha; Wen Hui Wang
We used the patch-clamp technique to study the effect of arachidonic acid (AA) on basolateral 18-pS K channels in the principal cell of the cortical collecting duct (CCD) of the rat kidney. Application of AA inhibited the 18-pS K channels in a dose-dependent manner and 10 microM AA caused a maximal inhibition. The effect of AA on the 18-pS K channel was specific because application of 11,14,17-eicosatrienoic acid had no effect on channel activity. Also, the inhibitory effect of AA on the 18-pS K channels was abolished by blocking cytochrome P-450 (CYP) epoxygenase with N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide (MS-PPOH) but was not affected by inhibiting CYP omega-hydroxylase or cyclooxygenase. The notion that the inhibitory effect of AA was mediated by CYP epoxygenase-dependent metabolites was further supported by the observation that application of 100 nM 11,12-epoxyeicosatrienoic acid (EET) mimicked the effect of AA and inhibited the basolateral 18-pS K channels. In contrast, addition of either 5,6-, 8,9-, or 14,15-EET failed to inhibit the 18-pS K channels. Moreover, application of 11,12-EET was still able to inhibit the 18-pS K channels in the presence of MS-PPOH. This suggests that 11,12-EET is a mediator for the AA-induced inhibition of the 18-pS K channels. We conclude that AA inhibits basolateral 18-pS K channels by a CYP epoxygenase-dependent pathway and that 11,12-EET is a mediator for the effect of AA on basolateral K channels in the CCD.
Kidney International | 2018
Ming Xiao Wang; Catherina A. Cuevas; Xiao Tong Su; Peng Wu; Zhong Xiuzi Gao; Dao Hong Lin; James A. McCormick; Chao Ling Yang; Wen Hui Wang; David H. Ellison
Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis.
Journal of Pharmacology and Experimental Therapeutics | 2017
Varunkumar Pandey; Victor Garcia; Ankit Gilani; Priyanka Mishra; Frank Fan Zhang; Mahesh P. Paudyal; John R. Falck; Alberto Nasjletti; Wen Hui Wang; Michal Laniado Schwartzman
20-Hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE) has been linked to pro-hypertensive and anti-hypertensive actions through its ability to promote vasoconstriction and inhibit Na transport in the ascending limb of the loop of Henle, respectively. In this study, we assessed the effects of 20-HETE blockade on blood pressure, renal hemodynamics, and urinary sodium excretion in Cyp4a14(−/−) male mice, which display androgen-driven 20-HETE–dependent hypertension. Administration of 2,5,8,11,14,17-hexaoxanonadecan-19-yl 20-hydroxyicosa-6(Z),15(Z)-dienoate (20-SOLA), a water-soluble 20-HETE antagonist, in the drinking water normalized the blood pressure of male Cyp4a14(−/−) hypertensive mice (±124 vs. ±153 mmHg) while having no effect on age-matched normotensive wild-type (WT) male mice. Hypertension in Cyp4a14(−/−) male mice was accompanied by decreased renal perfusion and reduced glomerular filtration rates, which were corrected by treatment with 20-SOLA. Interestingly, Cyp4a14(−/−) male mice treated with 20-SOLA displayed increased urinary sodium excretion that was paralleled by the reduction of blood pressure suggestive of an antinatriuretic activity of endogenous 20-HETE in the hypertensive mice. This interpretation is in line with the observation that the natriuretic response to acute isotonic saline loading in hypertensive Cyp4a14(−/−) male mice was significantly impaired relative to that in WT mice; this impairment was corrected by 20-SOLA treatment. Hence, endogenous 20-HETE appears to promote sodium conservation in hypertensive Cyp4a14(−/−) male mice, presumably, as a result of associated changes in renal hemodynamics and/or direct stimulatory action on tubular sodium reabsorption.
American Journal of Physiology-renal Physiology | 2018
Peng Wu; Zhong Xiuzi Gao; Xiao Tong Su; David H. Ellison; Juliette Hadchouel; Jacques Teulon; Wen Hui Wang
With-no-lysine kinase 4 (WNK4) and kidney-specific (KS)-WNK1 regulate ROMK (Kir1.1) channels in a variety of cell models. We now explore the role of WNK4 and KS-WNK1 in regulating ROMK in the native distal convoluted tubule (DCT)/connecting tubule (CNT) by measuring tertiapin-Q (TPNQ; ROMK inhibitor)-sensitive K+ currents with whole cell recording. TPNQ-sensitive K+ currents in DCT2/CNT of KS- WNK1-/- and WNK4-/- mice were significantly smaller than that of WT mice. In contrast, the basolateral K+ channels (a Kir4.1/5.1 heterotetramer) in the DCT were not inhibited. Moreover, WNK4-/- mice were hypokalemic, while KS- WNK1-/- mice had normal plasma K+ levels. High K+ (HK) intake significantly increased TPNQ-sensitive K+ currents in DCT2/CNT of WT and WNK4-/- mice but not in KS- WNK1-/- mice. However, TPNQ-sensitive K+ currents in the cortical collecting duct (CCD) were normal not only under control conditions but also significantly increased in response to HK in KS- WNK1-/- mice. This suggests that the deletion of KS-WNK1-induced inhibition of ROMK occurs only in the DCT2/CNT. Renal clearance study further demonstrated that the deletion of KS-WNK1 did not affect the renal ability of K+ excretion under control conditions and during increasing K+ intake. Also, HK intake did not cause hyperkalemia in KS- WNK1-/- mice. We conclude that KS-WNK1 but not WNK4 is required for HK intake-induced stimulation of ROMK activity in DCT2/CNT. However, KS-WNK1 is not essential for HK-induced stimulation of ROMK in the CCD, and the lack of KS-WNK1 does not affect net renal K+ excretion.
American Journal of Physiology-cell Physiology | 1996
Wen Hui Wang; Ming Lu; S. C. Hebert
American Journal of Physiology-renal Physiology | 1997
Wen Hui Wang; Ming Lu; Michael Balazy; Steven C. Hebert