Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dao-Xiu Zhou is active.

Publication


Featured researches published by Dao-Xiu Zhou.


The Plant Cell | 2006

Arabidopsis GCN5, HD1, and TAF1/HAF2 Interact to Regulate Histone Acetylation Required for Light-Responsive Gene Expression

Moussa Benhamed; Claire Bertrand; Caroline Servet; Dao-Xiu Zhou

We previously showed that Arabidopsis thaliana histone acetyltransferase TAF1/HAF2 is required for the light regulation of growth and gene expression, and we show here that histone acetyltransferase GCN5 and histone deacetylase HD1/HDA19 are also involved in such regulation. Mutation of GCN5 resulted in a long-hypocotyl phenotype and reduced light-inducible gene expression, whereas mutation of HD1 induced opposite effects. The double mutant gcn5 hd1 restored a normal photomorphogenic phenotype. By contrast, the double mutant gcn5 taf1 resulted in further loss of light-regulated gene expression. gcn5 reduced acetylation of histones H3 and H4, mostly on the core promoter regions, whereas hd1 increased acetylation on both core and more upstream promoter regions. GCN5 and TAF1 were both required for H3K9, H3K27, and H4K12 acetylation on the target promoters, but H3K14 acetylation was dependent only on GCN5. Interestingly, gcn5 taf1 had a cumulative effect mainly on H3K9 acetylation. On the other hand, hd1 induced increased acetylation on H3K9, H3K27, H4K5, and H4K8. GCN5 was also shown to be directly associated with the light-responsive promoters. These results suggest that acetylation of specific histone Lys residues, regulated by GCN5, TAF1, and HD1, is required for light-regulated gene expression.


Trends in Plant Science | 1999

Regulatory mechanism of plant gene transcription by GT-elements and GT-factors

Dao-Xiu Zhou

GT-elements are regulatory DNA sequences ususally found in tandem repeats in the promoter region of many different plant genes. Depending on promoter structure, GT-elements can have a positive or a negative transcription function. The cognate GT-element binding factors contain one or two trihelix DNA binding motifs, which have so far been identified in plant transcription factors only. GT-factors are ubiquitously expressed; in Arabidopsis they belong to a small family of transcription factors. The functioning of plant GT-elements and GT-factors shows complex regulatory features of plant gene transcription.


The Plant Cell | 2009

The WUSCHEL-Related Homeobox Gene WOX11 Is Required to Activate Shoot-Borne Crown Root Development in Rice

Yu Zhao; Yongfeng Hu; Mingqiu Dai; Limin Huang; Dao-Xiu Zhou

In rice (Oryza sativa), the shoot-borne crown roots are the major root type and are initiated at lower stem nodes as part of normal plant development. However, the regulatory mechanism of crown root development is poorly understood. In this work, we show that a WUSCHEL-related Homeobox (WOX) gene, WOX11, is involved in the activation of crown root emergence and growth. WOX11 was found to be expressed in emerging crown roots and later in cell division regions of the root meristem. The expression could be induced by exogenous auxin or cytokinin. Loss-of-function mutation or downregulation of the gene reduced the number and the growth rate of crown roots, whereas overexpression of the gene induced precocious crown root growth and dramatically increased the root biomass by producing crown roots at the upper stem nodes and the base of florets. The expressions of auxin- and cytokinin-responsive genes were affected in WOX11 overexpression and RNA interference transgenic plants. Further analysis showed that WOX11 directly repressed RR2, a type-A cytokinin-responsive regulator gene that was found to be expressed in crown root primordia. The results suggest that WOX11 may be an integrator of auxin and cytokinin signaling that feeds into RR2 to regulate cell proliferation during crown root development.


Plant Physiology | 2007

Down-Regulation of a SILENT INFORMATION REGULATOR2-Related Histone Deacetylase Gene, OsSRT1, Induces DNA Fragmentation and Cell Death in Rice

Limin Huang; Qianwen Sun; Fujun Qin; Chen Li; Yu Zhao; Dao-Xiu Zhou

The SILENT INFORMATION REGULATOR2 (SIR2) family proteins are NAD+-dependent histone deacetylases. Sir2 is involved in chromatin silencing at the mating-type loci, rDNA, and telomeres in yeast and is associated with lifespan extension in yeast, worms, and flies, but also in a broader range of additional functions. In this work, we investigated the role of OsSRT1, one of the two SIR2-related genes found in rice (Oryza sativa). We show that OsSRT1 is a widely expressed nuclear protein with higher levels in rapidly dividing tissues. OsSRT1 RNA interference induced an increase of histone H3K9 (lysine-9 of H3) acetylation and a decrease of H3K9 dimethylation, leading to H2O2 production, DNA fragmentation, cell death, and lesions mimicking plant hypersensitive responses during incompatible interactions with pathogens, whereas overexpression of OsSRT1 enhanced tolerance to oxidative stress. Transcript microarray analysis revealed that the transcription of many transposons and retrotransposons in addition to genes related to hypersensitive response and/or programmed cell death was activated. Chromatin immunoprecipitation assays showed that OsSRT1 down-regulation induced histone H3K9 acetylation on the transposable elements and some of the hypersensitive response-related genes, suggesting that these genes may be among the primary targets of deacetylation regulated by OsSRT1. Our data together suggest that the rice SIR2-like gene is required for safeguard against genome instability and cell damage to ensure plant cell growth, but likely implicates different molecular mechanisms than yeast and animal homologs.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development

Qianwen Sun; Dao-Xiu Zhou

Histone lysine methylation is an important epigenetic modification with both activating and repressive roles in gene expression. Jumonji C (jmjC) domain-containing proteins have been shown to reverse histone methylation in nonplant model systems. Here, we show that plant Jumonji C proteins have both conserved and specific features compared with mammalian homologues. In particular, the rice JMJD2 family jmjC gene JMJ706 is shown to encode a heterochromatin-enriched protein. The JMJ706 protein specifically reverses di- and trimethylations of lysine 9 of histone H3 (H3K9) in vitro. Loss-of-function mutations of the gene lead to increased di- and trimethylations of H3K9 and affect the spikelet development, including altered floral morphology and organ number. Gene expression and histone modification analysis indicates that JMJ706 regulates a subset of flower development regulatory genes. Taken together, our data suggest that rice JMJ706 encodes a heterochromatin-associated H3K9 demethylase involved in the regulation of flower development in rice.


Plant Physiology | 2007

A WUSCHEL-LIKE HOMEOBOX Gene Represses a YABBY Gene Expression Required for Rice Leaf Development

Mingqiu Dai; Yongfeng Hu; Yu Zhao; Huifang Liu; Dao-Xiu Zhou

YABBY and WUSCHEL-LIKE HOMEOBOX (WOX) genes have been shown to play important roles in lateral organ formation and meristem function. Here, we report the characterization of functional relationship between rice (Oryza sativa) YAB3 and WOX3 in rice leaf development. Rice YAB3 is closely related to maize (Zea mays) ZmYAB14 and Arabidopsis (Arabidopsis thaliana) FILAMENTOUS FLOWER (FIL), whereas rice WOX3 is highly conserved with maize narrow sheath1 (NS1) and NS2 and Arabidopsis PRESSED FLOWER (PRS). In situ hybridization experiments revealed that the expression of both genes was excluded from the shoot apical meristem, but the transcripts were detected in leaf primordia, young leaves, and reproductive organs without any polar distribution. The function of the two genes was studied by both overexpression and RNA interference (RNAi) in transgenic rice. YAB3 RNAi induced twisted and knotted leaves lacking specialized structures such as ligule and auricles, while no phenotypic change was observed in YAB3 overexpression plants, suggesting that rice YAB3 may be required for leaf cell growth and differentiation. Overexpression of WOX3 repressed YAB3 and showed a YAB3 RNAi phenotype. The expression of class I KNOTTED-LIKE HOMEOBOX (KNOX) genes was ectopically induced in leaves of YAB3 RNAi or WOX3 overexpression plants. Data from inducible WOX3 expression and DNA-protein interaction assays suggested that WOX3 acted as a transcriptional repressor of YAB3. These data reveal a regulatory network involving YAB3, WOX3, and KNOX genes required for rice leaf development.


Journal of Biological Chemistry | 2005

Arabidopsis HAF2 gene encoding TATA-binding protein (TBP)-associated factor TAF1, is required to integrate light signals to regulate gene expression and growth

Claire Bertrand; Moussa Benhamed; You-Fang Li; Mira Ayadi; Gaetan Lemonnier; Jean-Pierre Renou; Marianne Delarue; Dao-Xiu Zhou

Plant growth and development are sensitive to light. Light-responsive DNA-binding transcription factors have been functionally identified. However, how transcription initiation complex integrates light signals from enhancer-bound transcription factors remains unknown. In this work, we characterized mutations within the Arabidopsis HAF2 gene encoding TATA-binding protein-associated factor TAF1 (or TAFII250). The mutation of HAF2 induced decreases on chlorophyll accumulation, light-induced mRNA levels, and promoter activity. Genetic analysis indicated that HAF2 is involved in the pathways of both red/far-red and blue light signals. Double mutants between haf2-1 and hy5-1, a mutation of a light signaling positive DNA-binding transcription factor gene, had a synergistic effect on photomorphogenic traits and light-activated gene expression under different light wavelengths, suggesting that HAF2 is required for interaction with additional light-responsive DNA-binding transcription factors to fully respond to light induction. Chromatin immunoprecipitation assays showed that the mutation of HAF2 reduced acetylation of histone H3 in light-responsive promoters. In addition, transcriptome analysis showed that the mutation altered the expression of about 9% of genes in young leaves. These data indicate that TAF1 encoded by the Arabidopsis HAF2 gene functions as a coactivator capable of integrating light signals and acetylating histones to activate light-induced gene transcription.


Plant Physiology | 2007

The Rice YABBY1 Gene Is Involved in the Feedback Regulation of Gibberellin Metabolism

Mingqiu Dai; Yu Zhao; Qian Ma; Yongfeng Hu; Peter Hedden; Qifa Zhang; Dao-Xiu Zhou

Gibberellin (GA) biosynthesis is regulated by feedback control providing a mechanism for GA homeostasis in plants. However, regulatory elements involved in the feedback control are not known. In this report, we show that a rice (Oryza sativa) YABBY1 (YAB1) gene had a similar expression pattern as key rice GA biosynthetic genes GA3ox2 and GA20ox2. Overexpression of YAB1 in transgenic rice resulted in a semidwarf phenotype that could be fully rescued by applied GA. Quantification of the endogenous GA content revealed increases of GA20 and decreases of GA1 levels in the overexpression plants, in which the transcripts of the biosynthetic gene GA3ox2 were decreased. Cosuppression of YAB1 in transgenic plants induced expression of GA3ox2. The repression of GA3ox2 could be obtained upon treatment by dexamethasone of transgenic plants expressing a YAB1-glucocorticoid receptor fusion. Importantly, we show that YAB1 bound to a GA-responsive element within the GA3ox2 promoter. In addition, the expression of YAB1 was deregulated in GA biosynthesis and signaling mutants and could be either transiently induced by GA or repressed by a GA inhibitor. Finally, either overexpression or cosuppression of YAB1 impaired GA-mediated repression of GA3ox2. These data together suggest that YAB1 is involved in the feedback regulation of GA biosynthesis in rice.


Plant Journal | 2008

Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5

Moussa Benhamed; Marie-Laure Martin-Magniette; Ludivine Taconnat; Frédérique Bitton; Caroline Servet; Rebecca De Clercq; Björn De Meyer; Caroline Buysschaert; Stephane Rombauts; Raimundo Villarroel; Sébastien Aubourg; Jim Beynon; Rishikesh P. Bhalerao; George Coupland; Wilhelm Gruissem; Frank L.H. Menke; Bernd Weisshaar; Jean-Pierre Renou; Dao-Xiu Zhou; Pierre Hilson

We have assembled approximately 20 000 Arabidopsis thaliana promoter regions, compatible with functional studies that require cloning and with microarray applications. The promoter fragments can be captured as modular entry clones (MultiSite Gateway format) via site-specific recombinational cloning, and transferred into vectors of choice to investigate transcriptional networks. The fragments can also be amplified by PCR and printed on glass arrays. In combination with immunoprecipitation of protein-DNA complexes (ChIP-chip), these arrays enable characterization of binding sites for chromatin-associated proteins or the extent of chromatin modifications at genome scale. The Arabidopsis histone acetyltransferase GCN5 associated with 40% of the tested promoters. At most sites, binding did not depend on the integrity of the GCN5 bromodomain. However, the presence of the bromodomain was necessary for binding to 11% of the promoter regions, and correlated with acetylation of lysine 14 of histone H3 in these promoters. Combined analysis of ChIP-chip and transcriptomic data indicated that binding of GCN5 does not strictly correlate with gene activation. GCN5 has previously been shown to be required for light-regulated gene expression and growth, and we found that GCN5 targets were enriched in early light-responsive genes. Thus, in addition to its transcriptional activation function, GCN5 may play an important role in priming activation of inducible genes under non-induced conditions.


Molecular Plant | 2010

Histone Acetyltransferase AtGCN5/HAG1 Is a Versatile Regulator of Developmental and Inducible Gene Expression in Arabidopsis

Caroline Servet; Natalia Conde e Silva; Dao-Xiu Zhou

Histone acetylation/deacetylation is a dynamic process and plays an important role in gene regulation. Histone acetylation homeostasis is regulated by antagonist actions of histone acetyltransferases (HAT) and deacetylases (HDAC). Plant genome encodes multiple HATs and HDACs. The Arabidopsis HAT gene AtGCN5/HAG1plays an essential role in many plant development processes, such as meristem function, cell differentiation, leaf and floral organogenesis, and responses to environmental conditions such as light and cold, indicating an important role of this HAT in the regulation of both long-term developmental switches and short-term inducible gene expression. AtGCN5 targets to a large number of promoters and is required for acetylation of several histone H3 lysine residues. Recruitment of AtGCN5 to target promoters is likely to be mediated by direct or indirect interaction with DNA-binding transcription factors and/or by interaction with acetylated histone lysine residues on the targets. Interplay between AtGCN5 and other HAT and HDAC is demonstrated to control specific regulatory pathways. Analysis of the role of AtGCN5 in light-inducible gene expression suggests a function of AtGCN5 in preparing chromatin commitment for priming inducible gene activation in plants.

Collaboration


Dive into the Dao-Xiu Zhou's collaboration.

Top Co-Authors

Avatar

Yu Zhao

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yongfeng Hu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Régis Mache

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Xiaoyun Liu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Limin Huang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qifa Zhang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shaoli Zhou

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

You-Fang Li

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge