Daphne Bavelier
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daphne Bavelier.
Nature | 2003
C. Shawn Green; Daphne Bavelier
As video-game playing has become a ubiquitous activity in todays society, it is worth considering its potential consequences on perceptual and motor skills. It is well known that exposing an organism to an altered visual environment often results in modification of the visual system of the organism. The field of perceptual learning provides many examples of training-induced increases in performance. But perceptual learning, when it occurs, tends to be specific to the trained task; that is, generalization to new tasks is rarely found. Here we show, by contrast, that action-video-game playing is capable of altering a range of visual skills. Four experiments establish changes in different aspects of visual attention in habitual video-game players as compared with non-video-game players. In a fifth experiment, non-players trained on an action video game show marked improvement from their pre-training abilities, thereby establishing the role of playing in this effect.
Nature Reviews Neuroscience | 2002
Daphne Bavelier; Helen J. Neville
Animal studies have shown that sensory deprivation in one modality can have striking effects on the development of the remaining modalities. Although recent studies of deaf and blind humans have also provided convincing behavioural, electrophysiological and neuroimaging evidence of increased capabilities and altered organization of spared modalities, there is still much debate about the identity of the brain systems that are changed and the mechanisms that mediate these changes. Plastic changes across brain systems and related behaviours vary as a function of the timing and the nature of changes in experience. This specificity must be understood in the context of differences in the maturation rates and timing of the associated critical periods, differences in patterns of transiently existing connections, and differences in molecular factors across brain systems.
Psychological Science | 2007
C.S. Green; Daphne Bavelier
Playing action video games enhances several different aspects of visual processing; however, the mechanisms underlying this improvement remain unclear. Here we show that playing action video games can alter fundamental characteristics of the visual system, such as the spatial resolution of visual processing across the visual field. To determine the spatial resolution of visual processing, we measured the smallest distance a distractor could be from a target without compromising target identification. This approach exploits the fact that visual processing is hindered as distractors are brought close to the target, a phenomenon known as crowding. Compared with nonplayers, action-video-game players could tolerate smaller target-distractor distances. Thus, the spatial resolution of visual processing is enhanced in this population. Critically, similar effects were observed in non-video-game players who were trained on an action video game; this result verifies a causative relationship between video-game play and augmented spatial resolution.
Journal of Experimental Psychology: Human Perception and Performance | 2006
C. Shawn Green; Daphne Bavelier
The authors investigated the effect of action gaming on the spatial distribution of attention. The authors used the flanker compatibility effect to separately assess center and peripheral attentional resources in gamers versus nongamers. Gamers exhibited an enhancement in attentional resources compared with nongamers, not only in the periphery but also in central vision. The authors then used a target localization task to unambiguously establish that gaming enhances the spatial distribution of visual attention over a wide field of view. Gamers were more accurate than nongamers at all eccentricities tested, and the advantage held even when a concurrent center task was added, ruling out a trade-off between central and peripheral attention. By establishing the causal role of gaming through training studies, the authors demonstrate that action gaming enhances visuospatial attention throughout the visual field.
Psychology and Aging | 2008
C. S. Green; Daphne Bavelier
Human beings have an amazing capacity to learn new skills and adapt to new environments. However, several obstacles remain to be overcome in designing paradigms to broadly improve quality of life. Arguably, the most notable impediment to this goal is that learning tends to be quite specific to the trained regimen and does not transfer to even qualitatively similar tasks. This severely limits the potential benefits of learning to daily life. This review discusses training regimens that lead to the acquisition of new knowledge and strategies that can be used flexibly across a range of tasks and contexts. Possible characteristics of training regimens are proposed that may be responsible for augmented learning, including the manner in which task difficulty is progressed, the motivational state of the learner, and the type of feedback the training provides. When maximally implemented in rehabilitative paradigms, these characteristics may greatly increase the efficacy of training.
The Journal of Neuroscience | 2010
Daphne Bavelier; Dennis M. Levi; Roger W. Li; Yang Dan; Takao K. Hensch
Adult brain plasticity, although possible, remains more restricted in scope than during development. Here, we address conditions under which circuit rewiring may be facilitated in the mature brain. At a cellular and molecular level, adult plasticity is actively limited. Some of these “brakes” are structural, such as perineuronal nets or myelin, which inhibit neurite outgrowth. Others are functional, acting directly upon excitatory-inhibitory balance within local circuits. Plasticity in adulthood can be induced either by lifting these brakes through invasive interventions or by exploiting endogenous permissive factors, such as neuromodulators. Using the amblyopic visual system as a model, we discuss genetic, pharmacological, and environmental removal of brakes to enable recovery of vision in adult rodents. Although these mechanisms remain largely uncharted in the human, we consider how they may provide a biological foundation for the remarkable increase in plasticity after action video game play by amblyopic subjects.
Trends in Cognitive Sciences | 2006
Daphne Bavelier; Matthew W.G. Dye; Peter C. Hauser
The possibility that, following early auditory deprivation, the remaining senses such as vision are enhanced has been met with much excitement. However, deaf individuals exhibit both better and worse visual skills than hearing controls. We show that, when deafness is considered to the exclusion of other confounds, enhancements in visual cognition are noted. The changes are not, however, widespread but are selective, limited, as we propose, to those aspects of vision that are attentionally demanding and would normally benefit from auditory-visual convergence. The behavioral changes are accompanied by a reorganization of multisensory areas, ranging from higher-order cortex to early cortical areas, highlighting cross-modal interactions as a fundamental feature of brain organization and cognitive processing.
Nature Neuroscience | 2009
Renjie Li; Uri Polat; Walter Makous; Daphne Bavelier
The contrast sensitivity function (CSF) is routinely assessed in clinical evaluation of vision and is the primary limiting factor in how well one sees. CSF improvements are typically brought about by correction of the optics of the eye with eyeglasses, contact lenses or surgery. We found that the very act of action video game playing also enhanced contrast sensitivity, providing a complementary route to eyesight improvement.
Current Directions in Psychological Science | 2009
Matthew W.G. Dye; C. Shawn Green; Daphne Bavelier
In many everyday situations, speed is of the essence. However, fast decisions typically mean more mistakes. To this day, it remains unknown whether reaction times can be reduced with appropriate training, within one individual, across a range of tasks, and without compromising accuracy. Here we review evidence that the very act of playing action video games significantly reduces reaction times without sacrificing accuracy. Critically, this increase in speed is observed across various tasks beyond game situations. Video gaming may therefore provide an efficient training regimen to induce a general speeding of perceptual reaction times without decreases in accuracy of performance.
Neuropsychologia | 2009
Matthew W.G. Dye; C.S. Green; Daphne Bavelier
Previous research suggests that action video game play improves attentional resources, allowing gamers to better allocate their attention across both space and time. In order to further characterize the plastic changes resulting from playing these video games, we administered the Attentional Network Test (ANT) to action game players and non-playing controls aged between 7 and 22 years. By employing a mixture of cues and flankers, the ANT provides measures of how well attention is allocated to targets as a function of alerting and orienting cues, and to what extent observers are able to filter out the influence of task irrelevant information flanking those targets. The data suggest that action video game players of all ages have enhanced attentional skills that allow them to make faster correct responses to targets, and leaves additional processing resources that spill over to process distractors flanking the targets.