Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daphne Klotsa is active.

Publication


Featured researches published by Daphne Klotsa.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Understanding shape entropy through local dense packing

Greg van Anders; Daphne Klotsa; N. Khalid Ahmed; Michael Engel; Sharon C. Glotzer

Significance Many natural systems are structured by the ordering of repeated, distinct shapes. Understanding how this happens is difficult because shape affects structure in two ways. One is how the shape of a cell or nanoparticle, for example, affects its surface, chemical, or other intrinsic properties. The other is an emergent, entropic effect that arises from the geometry of the shape itself, which we term “shape entropy,” and is not well understood. In this paper, we determine how shape entropy affects structure. We quantify the mechanism and determine when shape entropy competes with intrinsic shape effects. Our results show that in a wide class of systems, shape affects bulk structure because crowded particles optimize their local packing. Entropy drives the phase behavior of colloids ranging from dense suspensions of hard spheres or rods to dilute suspensions of hard spheres and depletants. Entropic ordering of anisotropic shapes into complex crystals, liquid crystals, and even quasicrystals was demonstrated recently in computer simulations and experiments. The ordering of shapes appears to arise from the emergence of directional entropic forces (DEFs) that align neighboring particles, but these forces have been neither rigorously defined nor quantified in generic systems. Here, we show quantitatively that shape drives the phase behavior of systems of anisotropic particles upon crowding through DEFs. We define DEFs in generic systems and compute them for several hard particle systems. We show they are on the order of a few times the thermal energy (kBT) at the onset of ordering, placing DEFs on par with traditional depletion, van der Waals, and other intrinsic interactions. In experimental systems with these other interactions, we provide direct quantitative evidence that entropic effects of shape also contribute to self-assembly. We use DEFs to draw a distinction between self-assembly and packing behavior. We show that the mechanism that generates directional entropic forces is the maximization of entropy by optimizing local particle packing. We show that this mechanism occurs in a wide class of systems and we treat, in a unified way, the entropy-driven phase behavior of arbitrary shapes, incorporating the well-known works of Kirkwood, Onsager, and Asakura and Oosawa.


Physical Review Letters | 2014

Emergent Collective Phenomena in a Mixture of Hard Shapes through Active Rotation

Nguyen Nguyen; Daphne Klotsa; Michael Engel; Sharon C. Glotzer

We investigate collective phenomena with rotationally driven spinners of concave shape. Each spinner experiences a constant internal torque in either a clockwise or counterclockwise direction. Although the spinners are modeled as hard, otherwise noninteracting rigid bodies, their active motion induces an effective interaction that favors rotation in the same direction. With increasing density and activity, phase separation occurs via spinodal decomposition, as well as self-organization into rotating crystals. We observe the emergence of cooperative, superdiffusive motion along interfaces, which can transport inactive test particles. Our results demonstrate novel phase behavior of actively rotated particles that is not possible with linear propulsion or in nondriven, equilibrium systems of identical hard particles.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Shape control and compartmentalization in active colloidal cells

Matthew Spellings; Michael Engel; Daphne Klotsa; Syeda Sabrina; Aaron M. Drews; Nguyen Nguyen; Kyle J. M. Bishop; Sharon C. Glotzer

Significance Advances in simulation and synthesis of nanoparticles and colloids are leading to a new class of active colloidal systems where self-propelled and self-rotated particles convert energy to motion. Such systems hold promise for the possibility of colloidal machines––integrated systems of colloids able to carry out functions. An important step in this direction is appropriately confining colloids within cells whose shape can be controlled and within which activity can be compartmentalized. This paper uses theory and computer simulation to propose active colloidal cells and investigates their behavior. Our findings provide motivation and design rules for the fabrication of primitive colloidal machines. Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation.


Physical Review X | 2014

Complexity in surfaces of densest packings for families of polyhedra

Elizabeth R. Chen; Daphne Klotsa; Michael Engel; Pablo F. Damasceno; Sharon C. Glotzer

Packings of hard polyhedra have been studied for centuries due to their mathematical aesthetic and more recently for their applications in fields such as nanoscience, granular and colloidal matter, and biology. In all these fields, particle shape is important for structure and properties, especially upon crowding. Here, we explore packing as a function of shape. By combining simulations and analytic calculations, we study three 2-parameter families of hard polyhedra and report an extensive and systematic analysis of the densest packings of more than 55,000 convex shapes. The three families have the symmetries of triangle groups (icosahedral, octahedral, tetrahedral) and interpolate between various symmetric solids (Platonic, Archimedean, Catalan). We find that optimal (maximum) packing density surfaces that reveal unexpected richness and complexity, containing as many as 130 different structures within a single family. Our results demonstrate the utility of thinking of shape not as a static property of an object in the context of packings, but rather as but one point in a higher dimensional shape space whose neighbors in that space may have identical or markedly different packings. Finally, we present and interpret our packing results in a consistent and generally applicable way by proposing a method to distinguish regions of packings and classify types of transitions between them.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Clusters of polyhedra in spherical confinement

Erin Teich; Greg van Anders; Daphne Klotsa; Julia Dshemuchadse; Sharon C. Glotzer

Significance What is the best way to pack objects into a container? This simple question, one that is relevant to everyday life, biology, and nanoscience, is easy to state but surprisingly difficult to answer. Here, we use computational methods to determine dense packings of a set of polyhedra inside a sphere, for up to 60 constituent packers. Our dense packings display a wide variety of symmetries and structures, and indicate that the presence of the spherical container suppresses packing effects due to polyhedral shape. Our results have implications for a range of biological phenomena and experimental applications, including blood clotting, cell aggregation, drug delivery, colloidal engineering, and the creation of metamaterials. Dense particle packing in a confining volume remains a rich, largely unexplored problem, despite applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. Here, we report densest found clusters of the Platonic solids in spherical confinement, for up to N=60 constituent polyhedral particles. We examine the interplay between anisotropic particle shape and isotropic 3D confinement. Densest clusters exhibit a wide variety of symmetry point groups and form in up to three layers at higher N. For many N values, icosahedra and dodecahedra form clusters that resemble sphere clusters. These common structures are layers of optimal spherical codes in most cases, a surprising fact given the significant faceting of the icosahedron and dodecahedron. We also investigate cluster density as a function of N for each particle shape. We find that, in contrast to what happens in bulk, polyhedra often pack less densely than spheres. We also find especially dense clusters at so-called magic numbers of constituent particles. Our results showcase the structural diversity and experimental utility of families of solutions to the packing in confinement problem.


ACS Nano | 2015

Digital Alchemy for Materials Design: Colloids and Beyond

Greg van Anders; Daphne Klotsa; Andrew S. Karas; Paul M. Dodd; Sharon C. Glotzer


Bulletin of the American Physical Society | 2014

Unified Theoretical Framework for Shape Entropy in Colloids

Greg van Anders; N. Khalid Ahmed; Daphne Klotsa; Michael S. Engel; Sharon C. Glotzer


arXiv: Soft Condensed Matter | 2015

Digital Alchemy for Materials Design and Optimization

Greg van Anders; Daphne Klotsa; Andrew S. Karas; Paul M. Dodd; Sharon C. Glotzer


Soft Matter | 2018

Intermediate crystalline structures of colloids in shape space

Daphne Klotsa; Elizabeth R. Chen; Michael Engel; Sharon C. Glotzer


Archive | 2018

Transition in motility mechanism due to inertia in a model self-propelled two-sphere swimmer

Shannon K. Jones; Amneet Pal Singh Bhalla; Georgios Katsikis; Boyce E. Griffith; Daphne Klotsa

Collaboration


Dive into the Daphne Klotsa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Engel

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge