Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darci T. Butcher is active.

Publication


Featured researches published by Darci T. Butcher.


Epigenetics | 2013

Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray

Yi-an Chen; Mathieu Lemire; Sanaa Choufani; Darci T. Butcher; Daria Grafodatskaya; Brent W. Zanke; Steven Gallinger; Thomas J. Hudson; Rosanna Weksberg

DNA methylation, an important type of epigenetic modification in humans, participates in crucial cellular processes, such as embryonic development, X-inactivation, genomic imprinting and chromosome stability. Several platforms have been developed to study genome-wide DNA methylation. Many investigators in the field have chosen the Illumina Infinium HumanMethylation microarray for its ability to reliably assess DNA methylation following sodium bisulfite conversion. Here, we analyzed methylation profiles of 489 adult males and 357 adult females generated by the Infinium HumanMethylation450 microarray. Among the autosomal CpG sites that displayed significant methylation differences between the two sexes, we observed a significant enrichment of cross-reactive probes co-hybridizing to the sex chromosomes with more than 94% sequence identity. This could lead investigators to mistakenly infer the existence of significant autosomal sex-associated methylation. Using sequence identity cutoffs derived from the sex methylation analysis, we concluded that 6% of the array probes can potentially generate spurious signals because of co-hybridization to alternate genomic sequences highly homologous to the intended targets. Additionally, we discovered probes targeting polymorphic CpGs that overlapped SNPs. The methylation levels detected by these probes are simply the reflection of underlying genetic polymorphisms but could be misinterpreted as true signals. The existence of probes that are cross-reactive or of target polymorphic CpGs in the Illumina HumanMethylation microarrays can confound data obtained from such microarrays. Therefore, investigators should exercise caution when significant biological associations are found using these array platforms. A list of all cross-reactive probes and polymorphic CpGs identified by us are annotated in this paper.


Genomics | 2010

EBV transformation and cell culturing destabilizes DNA methylation in human lymphoblastoid cell lines

Daria Grafodatskaya; Sanaa Choufani; Jose Carlos Ferreira; Darci T. Butcher; Y. Lou; C. Zhao; Stephen W. Scherer; Rosanna Weksberg

Recent research suggests that epigenetic alterations involving DNA methylation can be causative for neurodevelopmental, growth and metabolic disorders. Although lymphoblastoid cell lines have been an invaluable resource for the study of both genetic and epigenetic disorders, the impact of EBV transformation, cell culturing and freezing on epigenetic patterns is unknown. We compared genome-wide DNA methylation patterns of four white blood cell samples, four low-passage lymphoblastoid cell lines pre and post freezing and four high-passage lymphobastoid cell lines, using two microarray platforms: Illumina HumanMethylation27 platform containing 27,578 CpG sites and Agilent Human CpG island Array containing 27,800 CpG islands. Comparison of genome-wide methylation profiles between white blood cells and lymphoblastoid cell lines demonstrated methylation alterations in lymphoblastoid cell lines occurring at random genomic locations. These changes were more profound in high-passage cells. Freezing at low-passages did not have a significant effect on DNA methylation. Methylation changes were observed in several imprinted differentially methylated regions, including DIRAS3, NNAT, H19, MEG3, NDN and MKRN3, but not in known imprinting centers. Our results suggest that lymphoblastoid cell lines should be used with caution for the identification of disease-associated DNA methylation changes or for discovery of new imprinted genes, as the methylation patterns seen in these cell lines may not always be representative of DNA methylation present in the original B-lymphocytes of the patient.


Genome Research | 2011

A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes

Sanaa Choufani; Jonathan S. Shapiro; Martha Susiarjo; Darci T. Butcher; Daria Grafodatskaya; Youliang Lou; Jose Carlos Ferreira; Dalila Pinto; Stephen W. Scherer; Lisa G. Shaffer; Philippe Coullin; Isabella Caniggia; Joseph Beyene; Rima Slim; Marisa S. Bartolomei; Rosanna Weksberg

Imprinted genes are critical for normal human growth and neurodevelopment. They are characterized by differentially methylated regions (DMRs) of DNA that confer parent of origin-specific transcription. We developed a new strategy to identify imprinted gene-associated DMRs. Using genome-wide methylation profiling of sodium bisulfite modified DNA from normal human tissues of biparental origin, candidate DMRs were identified by selecting CpGs with methylation levels consistent with putative allelic differential methylation. In parallel, the methylation profiles of tissues of uniparental origin, i.e., paternally-derived androgenetic complete hydatidiform moles (AnCHMs), and maternally-derived mature cystic ovarian teratoma (MCT), were examined and then used to identify CpGs with parent of origin-specific DNA methylation. With this approach, we found known DMRs associated with imprinted genomic regions as well as new DMRs for known imprinted genes, NAP1L5 and ZNF597, and novel candidate imprinted genes. The paternally methylated DMR for one candidate, AXL, a receptor tyrosine kinase, was also validated in experiments with mouse embryos that demonstrated Axl was expressed preferentially from the maternal allele in a DNA methylation-dependent manner.


Genomics | 2011

Sequence overlap between autosomal and sex-linked probes on the Illumina HumanMethylation27 microarray

Yi-an Chen; Sanaa Choufani; Jose Carlos Ferreira; Daria Grafodatskaya; Darci T. Butcher; Rosanna Weksberg

The Illumina Infinium HumanMethylation27 BeadChip (Illumina 27k) microarray is a high-throughput platform capable of interrogating the human DNA methylome. In a search for autosomal sex-specific DNA methylation using this microarray, we discovered autosomal CpG loci showing significant methylation differences between the sexes. However, we found that the majority of these probes cross-reacted with sequences from sex chromosomes. Moreover, we determined that 6-10% of the microarray probes are non-specific and map to highly homologous genomic sequences. Using probes targeting different CpGs that are exact duplicates of each other, we investigated the precision of these repeat measurements and concluded that the overall precision of this microarray is excellent. In addition, we identified a small number of probes targeting CpGs that include single-nucleotide polymorphisms. Overall, our findings address several technical issues associated with the Illumina 27k microarray that, once considered, will enhance the analysis and interpretation of data generated from this platform.


Fertility and Sterility | 2013

Basic concepts of epigenetics.

Michal Inbar-Feigenberg; Sanaa Choufani; Darci T. Butcher; Maian Roifman; Rosanna Weksberg

Several types of epigenetic marks facilitate the complex patterning required for normal human development. These epigenetic marks include DNA methylation at CpG dinucleotides, covalent modifications of histone proteins, and noncoding RNAs (ncRNAs). They function in a highly orchestrated manner, regulating mitotically heritable differences in gene expression potential without altering the primary DNA sequence. In germ cells and the developing embryo, genome-wide epigenetic reprogramming drives the erasure and reestablishment of correct epigenetic patterns at critical developmental time periods and in specific cell types. Two specific types of epigenetic regulation established in early development include X-chromosome inactivation and genomic imprinting; they regulate gene expression in a dosage-dependent and parent-of-origin-specific manner, respectively. Both genetic and environmental factors impact epigenetic marks, generating phenotypic variation that ranges from normal variation to human disease. Aberrant epigenetic patterning can lead to a variety of human disorders, including subfertility and imprinting disorders.


BMC Medical Genomics | 2013

Multilocus loss of DNA methylation in individuals with mutations in the histone H3 Lysine 4 Demethylase KDM5C

Daria Grafodatskaya; Barian Hy Chung; Darci T. Butcher; Andrei L. Turinsky; Sarah J Goodman; Sana Choufani; Yi-an Chen; Youliang Lou; Chunhua Zhao; Rageen Rajendram; Fatima Abidi; Cindy Skinner; James Stavropoulos; Carolyn A. Bondy; Jill Hamilton; Stephen W. Scherer; Charles E. Schwartz; Rosanna Weksberg

BackgroundA number of neurodevelopmental syndromes are caused by mutations in genes encoding proteins that normally function in epigenetic regulation. Identification of epigenetic alterations occurring in these disorders could shed light on molecular pathways relevant to neurodevelopment.ResultsUsing a genome-wide approach, we identified genes with significant loss of DNA methylation in blood of males with intellectual disability and mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 demethylase, in comparison to age/sex matched controls. Loss of DNA methylation in such individuals is consistent with known interactions between DNA methylation and H3 lysine 4 methylation. Further, loss of DNA methylation at the promoters of the three top candidate genes FBXL5, SCMH1, CACYBP was not observed in more than 900 population controls. We also found that DNA methylation at these three genes in blood correlated with dosage of KDM5C and its Y-linked homologue KDM5D. In addition, parallel sex-specific DNA methylation profiles in brain samples from control males and females were observed at FBXL5 and CACYBP.ConclusionsWe have, for the first time, identified epigenetic alterations in patient samples carrying a mutation in a gene involved in the regulation of histone modifications. These data support the concept that DNA methylation and H3 lysine 4 methylation are functionally interdependent. The data provide new insights into the molecular pathogenesis of intellectual disability. Further, our data suggest that some DNA methylation marks identified in blood can serve as biomarkers of epigenetic status in the brain.


Epigenetics | 2011

WNT2 promoter methylation in human placenta is associated with low birthweight percentile in the neonate

Jose Carlos Ferreira; Sanaa Choufani; Daria Grafodatskaya; Darci T. Butcher; Chunhua Zhao; David Chitayat; Cheryl Shuman; John Kingdom; Sarah Keating; Rosanna Weksberg

Neonates with birthweights below the tenth percentile for gestational age are considered small for gestational age (SGA). Such infants have an increased risk for perinatal mortality and morbidity as well as an increased lifetime risk for adult onset disorders. Low birth weight percentile is etiologically heterogeneous and may result from maternal, fetal, placental and environmental factors. However, the molecular determinants of human SGA are not well elucidated. We proposed that fetal growth potential could be negatively impacted by the epigenetic dysregulation of specific genes in the placenta. Using methyl DNA immunoprecipitation coupled with Agilent CpG island microarrays, we analyzed the differences in DNA methylation between placentas of eight SGA neonates and eight controls with birthweight percentiles above the tenth percentile. We identified several candidate genomic regions with differential DNA methylation between the two groups. The DNA methylation differences identified in the promoter of the WNT2 gene were prioritized for further study in an extended cohort of 170 samples given the important function of this gene in mouse placental development and its high expression in human placenta. High WNT2 promoter methylation (WNT2PrMe) was found only in placental tissue and not in the cord blood of the fetus. It was significantly associated with reduced WNT2 expression in placenta and with low birthweight percentile in the neonate. Our results show that WNT2 expression can be epigenetically downregulated in the placenta by DNA methylation of its promoter and that high WNT2PrMe is an epigenetic variant that is associated with reduced fetal growth potential. Note: All of the array data in the manuscript can be accessed from the Gene Expression Omnibus (GEO) NCBI database under GEO accession number GSE22326.


American Journal of Human Genetics | 2015

Symmetrical Dose-Dependent DNA-Methylation Profiles in Children with Deletion or Duplication of 7q11.23

Emma Strong; Darci T. Butcher; Rajat Singhania; Carolyn B. Mervis; Colleen A. Morris; Daniel D. De Carvalho; Rosanna Weksberg; Lucy R. Osborne

Epigenetic dysfunction has been implicated in a growing list of disorders that include cancer, neurodevelopmental disorders, and neurodegeneration. Williams syndrome (WS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders with broad phenotypic spectra caused by deletion and duplication, respectively, of a 1.5-Mb region that includes several genes with a role in epigenetic regulation. We have identified striking differences in DNA methylation across the genome between blood cells from children with WS or Dup7 and blood cells from typically developing (TD) children. Notably, regions that were differentially methylated in both WS and Dup7 displayed a significant and symmetrical gene-dose-dependent effect, such that WS typically showed increased and Dup7 showed decreased DNA methylation. Differentially methylated genes were significantly enriched with genes in pathways involved in neurodevelopment, autism spectrum disorder (ASD) candidate genes, and imprinted genes. Using alignment with ENCODE data, we also found the differentially methylated regions to be enriched with CCCTC-binding factor (CTCF) binding sites. These findings suggest that gene(s) within 7q11.23 alter DNA methylation at specific sites across the genome and result in dose-dependent DNA-methylation profiles in WS and Dup7. Given the extent of DNA-methylation changes and the potential impact on CTCF binding and chromatin regulation, epigenetic mechanisms most likely contribute to the complex neurological phenotypes of WS and Dup7. Our findings highlight the importance of DNA methylation in the pathogenesis of WS and Dup7 and provide molecular mechanisms that are potentially shared by WS, Dup7, and ASD.


Epigenetics | 2011

Assessment of methylation level prediction accuracy in methyl-DNA immunoprecipitation and sodium bisulfite based microarray platforms.

Rageen Rajendram; Jose Carlos Ferreira; Daria Grafodatskaya; Sanaa Choufani; Theodore Chiang; Shuye Pu; Darci T. Butcher; Rosanna Weksberg

In this study, we verified the accuracy of two array methods—methylated DNA immunoprecipitation coupled with CpG island microarrays (MeDIP-CGI-arrays) and sodium bisulfite conversion based microarrays (BC-arrays)—in predicting regional methylation levels as measured by pyrosequencing of bisulfite converted DNA (BC-pyrosequencing). To test the accuracy of these methods we used the Agilent Human CpG island and the Illumina HumanMethylation27 microarrays respectively, and compared microarray outputs to the data from targeted BC-pyrosequencing assays from several genomic regions of corresponding samples. We observed relatively high correlation with BC-pyrosequencing data for both array platforms, R = 0.87 for BC-Array and R = 0.79 for MeDIP-CGI array. However, MeDIP-CGI array were less reliable in predicting intermediate levels of DNA methylation. Several bioinformatics strategies, to ameliorate the performance of the MeDIP-CGI-Arrays did not improve the correlation with BC-pyrosequencing data. The high scalability, low cost and simpler analysis of BC-arrays, together with the recent extended coverage may make them a more versatile methylation analysis tool.


American Journal of Human Genetics | 2017

CHARGE and Kabuki Syndromes: Gene-Specific DNA Methylation Signatures Identify Epigenetic Mechanisms Linking These Clinically Overlapping Conditions

Darci T. Butcher; Cheryl Cytrynbaum; Andrei L. Turinsky; Michelle T. Siu; Michal Inbar-Feigenberg; Roberto Mendoza-Londono; David Chitayat; Susan Walker; Jerry Machado; Oana Caluseriu; Lucie Dupuis; Daria Grafodatskaya; William Reardon; Brigitte Gilbert-Dussardier; Alain Verloes; Frédéric Bilan; Jeff M. Milunsky; Raveen Basran; Blake C. Papsin; Tracy L. Stockley; Stephen W. Scherer; Sanaa Choufani; Michael Brudno; Rosanna Weksberg

Epigenetic dysregulation has emerged as a recurring mechanism in the etiology of neurodevelopmental disorders. Two such disorders, CHARGE and Kabuki syndromes, result from loss of function mutations in chromodomain helicase DNA-binding protein 7 (CHD7LOF) and lysine (K) methyltransferase 2D (KMT2DLOF), respectively. Although these two syndromes are clinically distinct, there is significant phenotypic overlap. We therefore expected that epigenetically driven developmental pathways regulated by CHD7 and KMT2D would overlap and that DNA methylation (DNAm) alterations downstream of the mutations in these genes would identify common target genes, elucidating a mechanistic link between these two conditions, as well as specific target genes for each disorder. Genome-wide DNAm profiles in individuals with CHARGE and Kabuki syndromes with CHD7LOF or KMT2DLOF identified distinct sets of DNAm differences in each of the disorders, which were used to generate two unique, highly specific and sensitive DNAm signatures. These DNAm signatures were able to differentiate pathogenic mutations in these two genes from controls and from each other. Analysis of the DNAm targets in each gene-specific signature identified both common gene targets, including homeobox A5 (HOXA5), which could account for some of the clinical overlap in CHARGE and Kabuki syndromes, as well as distinct gene targets. Our findings demonstrate how characterization of the epigenome can contribute to our understanding of disease pathophysiology for epigenetic disorders, paving the way for explorations of novel therapeutics.

Collaboration


Dive into the Darci T. Butcher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daria Grafodatskaya

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen W. Scherer

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge