Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where ri F. Da is active.

Publication


Featured researches published by ri F. Da.


Scientific Reports | 2015

Comparative Assessment of Transmission-Blocking Vaccine Candidates against Plasmodium falciparum

Melissa C. Kapulu; Dari F. Da; Kazutoyo Miura; Yuanyuan Li; Andrew M. Blagborough; Thomas S. Churcher; Daria Nikolaeva; Andrew R. Williams; Anna L. Goodman; Ibrahim Sangaré; Alison V. Turner; Matthew G. Cottingham; Alfredo Nicosia; Ursula Straschil; Takafumi Tsuboi; Sarah C. Gilbert; Carole A. Long; Robert E. Sinden; Simon J. Draper; Adrian V. S. Hill; Anna Cohuet; Sumi Biswas

Malaria transmission-blocking vaccines (TBVs) target the development of Plasmodium parasites within the mosquito, with the aim of preventing malaria transmission from one infected individual to another. Different vaccine platforms, mainly protein-in-adjuvant formulations delivering the leading candidate antigens, have been developed independently and have reported varied transmission-blocking activities (TBA). Here, recombinant chimpanzee adenovirus 63, ChAd63, and modified vaccinia virus Ankara, MVA, expressing AgAPN1, Pfs230-C, Pfs25, and Pfs48/45 were generated. Antibody responses primed individually against all antigens by ChAd63 immunization in BALB/c mice were boosted by the administration of MVA expressing the same antigen. These antibodies exhibited a hierarchy of inhibitory activity against the NF54 laboratory strain of P. falciparum in Anopheles stephensi mosquitoes using the standard membrane feeding assay (SMFA), with anti-Pfs230-C and anti-Pfs25 antibodies giving complete blockade. The observed rank order of inhibition was replicated against P. falciparum African field isolates in A. gambiae in direct membrane feeding assays (DMFA). TBA achieved was IgG concentration dependent. This study provides the first head-to-head comparative analysis of leading antigens using two different parasite sources in two different vector species, and can be used to guide selection of TBVs for future clinical development using the viral-vectored delivery platform.


Infection, Genetics and Evolution | 2014

Stress dependent infection cost of the human malaria agent Plasmodium falciparum on its natural vector Anopheles coluzzii

Ibrahim Sangaré; Roch K. Dabiré; Bienvenue Yameogo; Dari F. Da; Y. Michalakis; Anna Cohuet

Unraveling selective forces that shape vector-parasite interactions has critical implications for malaria control. However, it remains unclear whether Plasmodium infection induces a fitness cost to their natural mosquito vectors. Moreover, environmental conditions are known to affect infection outcome and may impact the effect of infection on mosquito fitness. We investigated in the laboratory the effects of exposition to and infection by field isolates of Plasmodium falciparum on fecundity and survival of a major vector in the field, Anopheles coluzzii under different conditions of access to sugar resources after blood feeding. The results evidenced fitness costs induced by exposition and infection. When sugar was available after blood meal, infected and exposed mosquitoes had either reduced or equal to survival to unexposed mosquitoes while fecundity was either increased or decreased depending on the blood donor. Under strong nutritional stress, survival was reduced for exposed and infected mosquitoes in all assays. We therefore provide here evidence of an environmental-dependant reduced survival in mosquitoes exposed to infection in a natural and one of the most important parasite-mosquito species associations for human malaria transmission.


Cell Reports | 2017

Targeting the Conserved Fusion Loop of HAP2 Inhibits the Transmission of Plasmodium berghei and falciparum

Fiona Angrisano; Katarzyna A. Sala; Dari F. Da; Yanjie Liu; Jimin Pei; Nick V. Grishin; William J. Snell; Andrew M. Blagborough

Summary Inhibiting transmission of Plasmodium is a central strategy in malarial eradication, and the biological process of gamete fusion during fertilization is a proven target for this approach. The lack of a structure or known molecular function of current anti-malarial vaccine targets has previously been a hindrance in the development of transmission-blocking vaccines. Structure/function studies have indicated that the conserved gamete membrane fusion protein HAP2 is a class II viral fusion protein. Here, we demonstrate that targeting a function-critical site of the fusion/cd loop with species-specific antibodies reduces Plasmodium berghei transmission in vivo by 58.9% and in vitro fertilization by up to 89.9%. A corresponding reduction in P. falciparum transmission (75.5%/36.4% reductions in intensity/prevalence) is observed in complimentary field studies. These results emphasize conserved mechanisms of fusion in Apicomplexa, while highlighting an approach to design future anti-malarial transmission-blocking vaccines.


Scientific Reports | 2017

Evaluation of two lead malaria transmission blocking vaccine candidate antibodies in natural parasite-vector combinations

Anaïs Bompard; Dari F. Da; Rakiswendé Serge Yerbanga; Sumi Biswas; Melissa C. Kapulu; Teun Bousema; Thierry Lefèvre; Anna Cohuet; Thomas S. Churcher

Transmission blocking vaccines (TBV) which aim to control malaria by inhibiting human-to-mosquito transmission show considerable promise though their utility against naturally circulating parasites remains unknown. The efficacy of two lead candidates targeting Pfs25 and Pfs230 antigens to prevent onwards transmission of naturally occurring parasites to a local mosquito strain is assessed using direct membrane feeding assays and murine antibodies in Burkina Faso. The transmission blocking activity of both candidates depends on the level of parasite exposure (as assessed by the mean number of oocysts in control mosquitoes) and antibody titers. A mathematical framework is devised to allow the efficacy of different candidates to be directly compared and determine the minimal antibody titers required to halt transmission in different settings. The increased efficacy with diminishing parasite exposure indicates that the efficacy of vaccines targeting either Pfs25 or Pfs230 may increase as malaria transmission declines. This has important implications for late-stage candidate selection and assessing how they can support the drive for malaria elimination.


eLife | 2018

Predicting the likelihood and intensity of mosquito infection from sex specific Plasmodium falciparum gametocyte density

John S. Bradley; Will Stone; Dari F. Da; Isabelle Morlais; Alassane Dicko; Anna Cohuet; Wamdaogo M. Guelbeogo; Almahamoudou Mahamar; Sandrine E. Nsango; Harouna M Soumare; Halimatou Diawara; Kjerstin Lanke; Wouter Graumans; Rianne Siebelink-Stoter; Marga van de Vegte-Bolmer; Ingrid Chen; Alfred B. Tiono; Bronner P. Gonçalves; Roland Gosling; Robert W. Sauerwein; Chris Drakeley; Thomas S. Churcher; Teun Bousema

Understanding the importance of gametocyte density on human-to-mosquito transmission is of immediate relevance to malaria control. Previous work (Churcher et al., 2013) indicated a complex relationship between gametocyte density and mosquito infection. Here we use data from 148 feeding experiments on naturally infected gametocyte carriers to show that the relationship is much simpler and depends on both female and male parasite density. The proportion of mosquitoes infected is primarily determined by the density of female gametocytes though transmission from low gametocyte densities may be impeded by a lack of male parasites. Improved precision of gametocyte quantification simplifies the shape of the relationship with infection increasing rapidly before plateauing at higher densities. The mean number of oocysts per mosquito rises quickly with gametocyte density but continues to increase across densities examined. The work highlights the importance of measuring both female and male gametocyte density when estimating the human reservoir of infection.


Molecular & Cellular Proteomics | 2017

Functional characterization and comparison of Plasmodium falciparum proteins as targets of transmission-blocking antibodies

Daria Nikolaeva; Joseph J. Illingworth; Kazutoyo Miura; Daniel G. W. Alanine; Iona J. Brian; Yuanyuan Li; Alex J. Fyfe; Dari F. Da; Anna Cohuet; Carole A. Long; Simon J. Draper; Sumi Biswas

Plasmodium falciparum malaria continues to evade control efforts, utilizing highly specialized sexual-stages to transmit infection between the human host and mosquito vector. In a vaccination model, antibodies directed to sexual-stage antigens, when ingested in the mosquito blood meal, can inhibit parasite growth in the midgut and consequently arrest transmission. Despite multiple datasets for the Plasmodium sexual-stage transcriptome and proteome, there have been no rational screens to identify candidate antigens for transmission-blocking vaccine (TBV) development. This study characterizes 12 proteins from across the P. falciparum sexual-stages as possible TBV targets. Recombinant proteins are heterologously expressed as full-length ectodomains in a mammalian HEK293 cell system. The proteins recapitulate native parasite epitopes as assessed by indirect fluorescence assay and a proportion exhibits immunoreactivity when tested against sera from individuals living in malaria-endemic Burkina Faso and Mali. Purified IgG generated to the mosquito-stage parasite antigen enolase demonstrates moderate inhibition of parasite development in the mosquito midgut by the ex vivo standard membrane feeding assay. The findings support the use of rational screens and comparative functional assessments in identifying proteins of the P. falciparum transmission pathway and establishing a robust pre-clinical TBV pipeline.The malaria agent Plasmodium falciparum continues to evade control efforts. Despite multiple datasets for the Plasmodium sexual-stage transcriptome and proteome, there have been no rational screens to identify candidate antigens for transmission-blocking vaccine (TBV) development. We demonstrate the use of rational screens and comparative functional assessments in identifying proteins of the P. falciparum transmission pathway and establishing a robust pre-clinical TBV pipeline. Graphical Abstract Highlights Characterization of 12 proteins from across the P. falciparum sexual-stages as possible TBV targets. Heterologously expressed recombinant proteins recapitulate native parasite epitopes. Some recombinant proteins exhibit immunoreactivity when tested against sera from individuals from malaria-endemic Burkina Faso and Mali. Purified IgG against the antigen enolase moderately inhibits parasite development in the mosquito midgut. Plasmodium falciparum malaria continues to evade control efforts, utilizing highly specialized sexual-stages to transmit infection between the human host and mosquito vector. In a vaccination model, antibodies directed to sexual-stage antigens, when ingested in the mosquito blood meal, can inhibit parasite growth in the midgut and consequently arrest transmission. Despite multiple datasets for the Plasmodium sexual-stage transcriptome and proteome, there have been no rational screens to identify candidate antigens for transmission-blocking vaccine (TBV) development. This study characterizes 12 proteins from across the P. falciparum sexual-stages as possible TBV targets. Recombinant proteins are heterologously expressed as full-length ectodomains in a mammalian HEK293 cell system. The proteins recapitulate native parasite epitopes as assessed by indirect fluorescence assay and a proportion exhibits immunoreactivity when tested against sera from individuals living in malaria-endemic Burkina Faso and Mali. Purified IgG generated to the mosquito-stage parasite antigen enolase demonstrates moderate inhibition of parasite development in the mosquito midgut by the ex vivo standard membrane feeding assay. The findings support the use of rational screens and comparative functional assessments in identifying proteins of the P. falciparum transmission pathway and establishing a robust pre-clinical TBV pipeline.


Scientific Reports | 2018

Immunization with Transgenic Rodent Malaria Parasites Expressing Pfs25 Induces Potent Transmission-Blocking Activity

Katarzyna A. Sala; Fiona Angrisano; Dari F. Da; Iona J. Taylor; Thomas S. Churcher; Andrew M. Blagborough

An anti-malarial transmission blocking vaccine (TBV) would be an important tool for disease control or elimination, though current candidates have failed to induce high efficacy in clinical studies. The ookinete surface protein P25 is a primary target for TBV development, but heterologous expression of P25 with appropriate conformation is problematic and a pre-requisite for achieving functional titers. A potential alternative to recombinant/sub-unit vaccine is immunization with a non-pathogenic, whole-parasite vaccine. This study examines the ability of a purified transgenic rodent-malaria parasite (PbPfs25DR3), expressing Plasmodium falciparum P25 in native conformation on the P. berghei ookinete surface, to act as a TBV. Vaccination with purified PbPfs25DR3 ookinetes produces a potent anti-Pfs25 response and high transmission-blocking efficacy in the laboratory, findings that are then translated to experimentation on natural field isolates of P. falciparum from infected individuals in Burkina Faso. Efficacy is demonstrated in the lab and the field (up to 93.3%/97.1% reductions in transmission intensity respectively), with both a homologous strategy with one and two boosts, and as part of a prime-boost regime, providing support for the future development of a whole-parasite TBV.


Parasites & Vectors | 2018

Detection of Plasmodium berghei infected Anopheles stephensi using near-infrared spectroscopy

Pedro M. Esperança; Andrew M. Blagborough; Dari F. Da; Floyd E. Dowell; Thomas S. Churcher

BackgroundThe proportion of mosquitoes infected with malaria is an important entomological metric used to assess the intensity of transmission and the impact of vector control interventions. Currently, the prevalence of mosquitoes with salivary gland sporozoites is estimated by dissecting mosquitoes under a microscope or using molecular methods. These techniques are laborious, subjective, and require either expensive equipment or training. This study evaluates the potential of near-infrared spectroscopy (NIRS) to identify laboratory reared mosquitoes infected with rodent malaria.MethodsAnopheles stephensi mosquitoes were reared in the laboratory and fed on Plasmodium berghei infected blood. After 12 and 21 days post-feeding mosquitoes were killed, scanned and analysed using NIRS and immediately dissected by microscopy to determine the number of oocysts on the midgut wall or sporozoites in the salivary glands. A predictive classification model was used to determine parasite prevalence and intensity status from spectra.ResultsThe predictive model correctly classifies infectious and uninfectious mosquitoes with an overall accuracy of 72%. The false negative and false positive rates were 30 and 26%, respectively. While NIRS was able to differentiate between uninfectious and highly infectious mosquitoes, differentiating between mid-range infectious groups was less accurate. Multiple scans of the same specimen, with repositioning the mosquito between scans, is shown to improve accuracy. On a smaller dataset NIRS was unable to predict whether mosquitoes harboured oocysts.ConclusionsTo our knowledge, we provide the first evidence that NIRS can differentiate between infectious and uninfectious mosquitoes. Currently, distinguishing between different intensities of infection is challenging. The classification model provides a flexible framework and allows for different error rates to be optimised, enabling the sensitivity and specificity of the technique to be varied according to requirements.


Parasites & Vectors | 2017

Comparative assessment of An. gambiae and An. stephensi mosquitoes to determine transmission-reducing activity of antibodies against P. falciparum sexual stage antigens

Maarten Eldering; Anaïs Bompard; Kazutoyo Miura; Will Stone; Isabelle Morlais; Anna Cohuet; Geert-Jan van Gemert; Patrick M. Brock; Sanna R. Rijpma; Marga van de Vegte-Bolmer; Wouter Graumans; Rianne Siebelink-Stoter; Dari F. Da; Carole A. Long; Merribeth J. Morin; Robert W. Sauerwein; Thomas S. Churcher; Teun Bousema

BackgroundWith the increasing interest in vaccines to interrupt malaria transmission, there is a demand for harmonization of current methods to assess Plasmodium transmission in laboratory settings. Potential vaccine candidates are currently tested in the standard membrane feeding assay (SMFA) that commonly relies on Anopheles stephensi mosquitoes. Other mosquito species including Anopheles gambiae are the dominant malaria vectors for Plasmodium falciparum in sub-Saharan Africa.MethodsUsing human serum and monoclonal pre-fertilization (anti-Pfs48/45) and post-fertilization (anti-Pfs25) antibodies known to effectively inhibit sporogony, we directly compared SMFA based estimates of transmission-reducing activity (TRA) for An. stephensi and An. gambiae mosquitoes.ResultsIn the absence of transmission-reducing antibodies, average numbers of oocysts were similar between An. gambiae and An. stephensi. Antibody-mediated TRA was strongly correlated between both mosquito species, and absolute TRA estimates for pre-fertilisation monoclonal antibodies (mAb) showed no significant difference between the two species. TRA estimates for IgG of naturally exposed individuals and partially effective concentrations of anti-Pfs25 mAb were higher for An. stephensi than for An. gambiae.ConclusionOur findings support the use of An. stephensi in the SMFA for target prioritization. As a vaccine moves through product development, better estimates of TRA and transmission-blocking activity (TBA) may need to be obtained in epidemiologically relevant parasite-species combination.


International Journal for Parasitology | 2012

Measuring the blockade of malaria transmission--an analysis of the Standard Membrane Feeding Assay.

Thomas S. Churcher; Andrew M. Blagborough; Michael J. Delves; Chandra Ramakrishnan; Melissa C. Kapulu; Andrew R. Williams; Sumi Biswas; Dari F. Da; Anna Cohuet; Robert E. Sinden

Collaboration


Dive into the ri F. Da's collaboration.

Top Co-Authors

Avatar

Anna Cohuet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carole A. Long

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kazutoyo Miura

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge