Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darin Bloemberg is active.

Publication


Featured researches published by Darin Bloemberg.


PLOS ONE | 2012

Rapid Determination of Myosin Heavy Chain Expression in Rat, Mouse, and Human Skeletal Muscle Using Multicolor Immunofluorescence Analysis

Darin Bloemberg; Joe Quadrilatero

Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages. Immunofluorescence analysis is a sensitive method that allows for simultaneous evaluation of multiple MHC isoforms on a large number of fibers on a single cross-section, and offers a more precise means of identifying fiber types. In this investigation we characterized pure and hybrid fiber type distribution in 10 rat and 10 mouse skeletal muscles, as well as human vastus lateralis (VL) using multicolor immunofluorescence analysis. In addition, we determined fiber type-specific cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, and α-glycerophosphate dehydrogenase (GPD) activity. Using this procedure we were able to easily identify pure and hybrid fiber populations in rat, mouse, and human muscle. Hybrid fibers were identified in all species and made up a significant portion of the total population in some rat and mouse muscles. For example, rat mixed gastrocnemius (MG) contained 12.2% hybrid fibers whereas mouse white tibialis anterior (WTA) contained 12.1% hybrid fibers. Collectively, we outline a simple and time-efficient method for determining MHC expression in skeletal muscle of multiple species. In addition, we provide a useful resource of the pure and hybrid fiber type distribution, fiber CSA, and relative fiber type-specific SDH and GPD activity in a number of rat and mouse muscles.


American Journal of Physiology-cell Physiology | 2011

Enhanced Ca2+ transport and muscle relaxation in skeletal muscle from sarcolipin-null mice

A. Russell Tupling; Eric Bombardier; Subash C. Gupta; Dawar Hussain; Chris Vigna; Darin Bloemberg; Joe Quadrilatero; Maria G. Trivieri; Gopal J. Babu; Peter H. Backx; Muthu Periasamy; David H. MacLennan; Anthony O. Gramolini

Sarcolipin (SLN) inhibits sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pumps. To evaluate the physiological significance of SLN in skeletal muscle, we compared muscle contractility and SERCA activity between Sln-null and wild-type mice. SLN protein expression in wild-type mice was abundant in soleus and red gastrocnemius (RG), low in extensor digitorum longus (EDL), and absent from white gastrocnemius (WG). SERCA activity rates were increased in soleus and RG, but not in EDL or WG, from Sln-null muscles, compared with wild type. No differences were seen between wild-type and Sln-null EDL muscles in force-frequency curves or maximum rates of force development (+dF/dt). Maximum relaxation rates (-dF/dt) of EDL were higher in Sln-null than wild type across a range of submaximal stimulation frequencies, but not during a twitch or peak tetanic contraction. For soleus, no differences were seen between wild type and Sln-null in peak tetanic force or +dF/dt; however, force-frequency curves showed that peak force during a twitch and 10-Hz contraction was lower in Sln-null. Changes in the soleus force-frequency curve corresponded with faster rates of force relaxation at nearly all stimulation frequencies in Sln-null compared with wild type. Repeated tetanic stimulation of soleus caused increased (-dF/dt) in wild type, but not in Sln-null. No compensatory responses were detected in analysis of other Ca(2+) regulatory proteins using Western blotting and immunohistochemistry or myosin heavy chain expression using immunofluorescence. These results show that 1) SLN regulates Ca(2+)-ATPase activity thereby regulating contractile kinetics in at least some skeletal muscles, 2) the functional significance of SLN is graded to the endogenous SLN expression level, and 3) SLN inhibitory effects on SERCA function are relieved in response to repeated contractions thus enhancing relaxation rates.


PLOS ONE | 2013

Co-Expression of SERCA Isoforms, Phospholamban and Sarcolipin in Human Skeletal Muscle Fibers

Val A. Fajardo; Eric Bombardier; Chris Vigna; Tahira Devji; Darin Bloemberg; Daniel Gamu; Anthony O. Gramolini; Joe Quadrilatero; A. Russell Tupling

Sarcolipin (SLN) and phospholamban (PLN) inhibit the activity of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) by reducing their apparent affinity for Ca2+. A ternary complex between SLN, PLN, and SERCAs results in super-inhibition of SERCA activity. Analysis of skeletal muscle homogenate has limited our current understanding of whether SLN and PLN regulate SERCA1a, SERCA2a, or both in skeletal muscle and whether SLN and PLN are co-expressed in skeletal muscle fibers. Biopsies from human vastus lateralis were analyzed through single fiber Western blotting and immunohisto/fluorescence staining to circumvent this limitation. With a newly generated SLN antibody, we report for the first time that SLN protein is present in human skeletal muscle. Addition of the SLN antibody (50 µg) to vastus lateralis homogenates increased the apparent Ca2+ affinity of SERCA (K Ca, pCa units) (-Ab, 5.85 ± 0.02 vs. +Ab, 5.95 ± 0.02) and maximal SERCA activity (μmol/g protein/min) (-Ab, 122 ± 6.4 vs. +Ab, 159 ± 11) demonstrating a functional interaction between SLN and SERCAs in human vastus lateralis. Specifically, our results suggest that although SLN and PLN may preferentially regulate SERCA1a, and SERCA2a, respectively, physiologically they both may regulate either SERCA isoform. Furthermore, we show that SLN and PLN co-immunoprecipitate in human vastus lateralis homogenate and are simultaneously expressed in 81% of the fibers analyzed with Western blotting which implies that super-inhibition of SERCA may exist in human skeletal muscle. Finally, we demonstrate unequivocally that mouse soleus contains PLN protein suggesting that super-inhibition of SERCA may also be important physiologically in rodent skeletal muscle.


PLOS ONE | 2015

High Intensity Interval and Endurance Training Have Opposing Effects on Markers of Heart Failure and Cardiac Remodeling in Hypertensive Rats

Tanya M. Holloway; Darin Bloemberg; Mayne L. da Silva; Jeremy A. Simpson; Joe Quadrilatero; Lawrence L. Spriet

There has been re-emerging interest and significant work dedicated to investigating the metabolic effects of high intensity interval training (HIIT) in recent years. HIIT is considered to be a time efficient alternative to classic endurance training (ET) that elicits similar metabolic responses in skeletal muscle. However, there is a lack of information on the impact of HIIT on cardiac muscle in disease. Therefore, we determined the efficacy of ET and HIIT to alter cardiac muscle characteristics involved in the development of diastolic dysfunction, such as ventricular hypertrophy, fibrosis and angiogenesis, in a well-established rodent model of hypertension-induced heart failure before the development of overt heart failure. ET decreased left ventricle fibrosis by ~40% (P < 0.05), and promoted a 20% (P<0.05) increase in the left ventricular capillary/fibre ratio, an increase in endothelial nitric oxide synthase protein (P<0.05), and a decrease in hypoxia inducible factor 1 alpha protein content (P<0.05). In contrast, HIIT did not decrease existing fibrosis, and HIIT animals displayed a 20% increase in left ventricular mass (P<0.05) and a 20% decrease in cross sectional area (P<0.05). HIIT also increased brain natriuretic peptide by 50% (P<0.05), in the absence of concomitant angiogenesis, strongly suggesting pathological cardiac remodeling. The current data support the longstanding belief in the effectiveness of ET in hypertension. However, HIIT promoted a pathological adaptation in the left ventricle in the presence of hypertension, highlighting the need for further research on the widespread effects of HIIT in the presence of disease.


Acta Physiologica | 2014

Autophagy is altered in skeletal and cardiac muscle of spontaneously hypertensive rats

Darin Bloemberg; E. McDonald; D. Dulay; Joe Quadrilatero

Autophagy is a subcellular degradation mechanism important for muscle maintenance. Hypertension induces well‐characterized pathological changes to the heart and is associated with impaired function and increased apoptotic signalling in skeletal muscle. We examined whether essential hypertension affects several autophagy markers in skeletal and cardiac muscle.


Biochemical and Biophysical Research Communications | 2010

Apoptosis repressor with caspase recruitment domain is dramatically reduced in cardiac, skeletal, and vascular smooth muscle during hypertension.

Joe Quadrilatero; Darin Bloemberg

Apoptosis repressor with caspase recruitment domain (ARC) is a unique anti-apoptotic protein with a distinct tissue distribution. In addition, unlike most anti-apoptotic proteins which act on one pathway, ARC can inhibit apoptosis mediated by both the death-receptor and mitochondrial signaling pathways. In this study, we confirm previous reports showing high levels of ARC protein in rat heart and skeletal muscle, but demonstrate for the first time that ARC is also expressed in rat aorta. Immunoblot analysis on endothelium-denuded aorta as well as immunohistochemical analysis on intact aorta demonstrated that ARC was highly expressed in smooth muscle. Immunoblot analysis also found that ARC protein was severely downregulated in skeletal muscle (-82%; P<0.001), heart (-80%; P<0.001), and aorta (-71%; P<0.001) of spontaneously hypertensive rats (SHR) compared to normotensive Wistar-Kyoto (WKY) rats. Decreased ARC levels were also confirmed in tissues of hypertensive animals by immunohistochemical analysis. Collectively, this data suggests that ARC protein is expressed in vascular smooth muscle and is significantly reduced in several target tissues during hypertension.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

High intensity interval and endurance training are associated with divergent skeletal muscle adaptations in a rodent model of hypertension

Tanya M. Holloway; Darin Bloemberg; Mayne L. da Silva; Joe Quadrilatero; Lawrence L. Spriet

Skeletal muscle is extremely adaptable to a variety of metabolic challenges, as both traditional moderate-intensity endurance (ET) and high-intensity interval training (HIIT) increases oxidative potential in a coordinated manner. Although these responses have been clearly demonstrated in healthy individuals, it remains to be determined whether both produce similar responses in the context of hypertension, one of the most prevalent and costly diseases worldwide. Therefore, in the current study, we used the Dahl sodium-sensitive rat, a model of hypertension, to determine the molecular responses to 4 wk of either ET or HIIT in the red (RG) and white gastrocnemius (WG) muscles. In the RG, both ET and HIIT increased the content of electron transport chain proteins and increased succinate dehydrogenase (SDH) content in type I fibers. Although both intensities of exercise shifted fiber type in RG (increased IIA, decreased IIX), only HIIT was associated with a reduction in endothelial nitric oxide synthase and an increase in HIF-1α proteins. In the WG, both ET and HIIT increased markers of the electron transport chain; however, HIIT decreased SDH content in a fiber-specific manner. ET increased type IIA, decreased IIB fibers, and increased capillarization, while, in contrast, HIIT increased the percentage of IIB fibers, decreased capillary-to-fiber ratios, decreased endothelial nitric oxide synthase, and increased hypoxia inducible factor-1α (HIF-1α) protein. Altogether, these data show that unlike in healthy animals, ET and HIIT have divergent effects in the skeletal muscle of hypertensive rats. This suggests ET may be optimal at improving the oxidative capacity of skeletal muscle in animals with hypertension.


Biochimica et Biophysica Acta | 2014

Mitochondrial pro-apoptotic indices do not precede the transient caspase activation associated with myogenesis

Darin Bloemberg; Joe Quadrilatero

Skeletal muscle differentiation requires activity of the apoptotic protease caspase-3. We attempted to identify the source of caspase activation in differentiating C2C12 skeletal myoblasts. In addition to caspase-3, caspase-2 was transiently activated during differentiation; however, no changes were observed in caspase-8 or -9 activity. Although mitochondrial Bax increased, this was matched by Bcl-2, resulting in no change to the mitochondrial Bax:Bcl-2 ratio early during differentiation. Interestingly, mitochondrial membrane potential increased on a timeline similar to caspase activation and was accompanied by an immediate, temporary reduction in cytosolic Smac and cytochrome c. Since XIAP protein expression dramatically declined during myogenesis, we investigated whether this contributes to caspase-3 activation. Despite reducing caspase-3 activity by up to 57%, differentiation was unaffected in cells overexpressing normal or E3-mutant XIAP. Furthermore, a XIAP mutant which can inhibit caspase-9 but not caspase-3 did not reduce caspase-3 activity or affect differentiation. Administering a chemical caspase-3 inhibitor demonstrated that complete enzyme inhibition was required to impair myogenesis. These results suggest that neither mitochondrial apoptotic signaling nor XIAP degradation is responsible for transient caspase-3 activation during C2C12 differentiation.


Experimental Biology and Medicine | 2015

High-fat feeding does not induce an autophagic or apoptotic phenotype in female rat skeletal muscle

Troy L. Campbell; Andrew S. Mitchell; Elliott M. McMillan; Darin Bloemberg; Dmytro Pavlov; Isabelle Messa; John G. Mielke; Joe Quadrilatero

Apoptosis and autophagy are critical in normal skeletal muscle homeostasis; however, dysregulation can lead to muscle atrophy and dysfunction. Lipotoxicity and/or lipid accumulation may promote apoptosis, as well as directly or indirectly influence autophagic signaling. Therefore, the purpose of this study was to examine the effect of a 16-week high-fat diet on morphological, apoptotic, and autophagic indices in oxidative and glycolytic skeletal muscle of female rats. High-fat feeding resulted in increased fat pad mass, altered glucose tolerance, and lower muscle pAKT levels, as well as lipid accumulation and reactive oxygen species generation in soleus muscle; however, muscle weights, fiber type-specific cross-sectional area, and fiber type distribution were not affected. Moreover, DNA fragmentation and LC3 lipidation as well as several apoptotic (ARC, Bax, Bid, tBid, Hsp70, pBcl-2) and autophagic (ATG7, ATG4B, Beclin 1, BNIP3, p70 s6k, cathepsin activity) indices were not altered in soleus or plantaris following high-fat diet. Interestingly, soleus muscle displayed small increases in caspase-3, caspase-8, and caspase-9 activity, as well as higher ATG12-5 and p62 protein, while both soleus and plantaris muscle showed dramatically reduced Bcl-2 and X-linked inhibitor of apoptosis protein (XIAP) levels. In conclusion, this work demonstrates that 16 weeks of high-fat feeding does not affect tissue morphology or induce a global autophagic or apoptotic phenotype in skeletal muscle of female rats. However, high-fat feeding selectively influenced a number of apoptotic and autophagic indices which could have implications during periods of enhanced muscle stress.


PLOS ONE | 2017

Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice

Val A. Fajardo; Daniel Gamu; Andrew J. Mitchell; Darin Bloemberg; Eric Bombardier; Paige J. Chambers; Catherine Bellissimo; Joe Quadrilatero; A. Russell Tupling; Atsushi Asakura

Sarcolipin (SLN) and phospholamban (PLN) are two small proteins that regulate the sarco(endo)plasmic reticulum Ca2+-ATPase pumps. In a recent study, we discovered that Pln overexpression (PlnOE) in slow-twitch type I skeletal muscle fibers drastically impaired SERCA function and caused a centronuclear myopathy-like phenotype, severe muscle atrophy and weakness, and an 8 to 9-fold upregulation of SLN protein in the soleus muscles. Here, we sought to determine the physiological role of SLN upregulation, and based on its role as a SERCA inhibitor, we hypothesized that it would represent a maladaptive response that contributes to the SERCA dysfunction and the overall myopathy observed in the PlnOE mice. To this end, we crossed Sln-null (SlnKO) mice with PlnOE mice to generate a PlnOE/SlnKO mouse colony and assessed SERCA function, CNM pathology, in vitro contractility, muscle mass, calcineurin signaling, daily activity and food intake, and proteolytic enzyme activity. Our results indicate that genetic deletion of Sln did not improve SERCA function nor rescue the CNM phenotype, but did result in exacerbated muscle atrophy and weakness, due to a failure to induce type II fiber compensatory hypertrophy and a reduction in total myofiber count. Mechanistically, our findings suggest that impaired calcineurin activation and resultant decreased expression of stabilin-2, and/or impaired autophagic signaling could be involved. Future studies should examine these possibilities. In conclusion, our study demonstrates the importance of SLN upregulation in combating muscle myopathy in the PlnOE mice, and since SLN is upregulated across several myopathies, our findings may reveal SLN as a novel and universal therapeutic target.

Collaboration


Dive into the Darin Bloemberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Vigna

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge