Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dario Frascari is active.

Publication


Featured researches published by Dario Frascari.


Applied Microbiology and Biotechnology | 2012

Microbial degradation of chloroform

Martina Cappelletti; Dario Frascari; Davide Zannoni; Stefano Fedi

Chloroform (CF) is largely produced by both anthropogenic and natural sources. It is detected in ground and surface water sources and it represents the most abundant halocarbon in the atmosphere. Microbial CF degradation occurs under both aerobic and anaerobic conditions. Apart from a few reports describing the utilization of CF as a terminal electron acceptor during growth, CF degradation was mainly reported as a cometabolic process. CF aerobic cometabolism is supported by growth on short-chain alkanes (i.e., methane, propane, butane, and hexane), aromatic hydrocarbons (i.e., toluene and phenol), and ammonia via the activity of monooxygenases (MOs) operatively divided into different families. The main factors affecting CF cometabolism are (1) the inhibition of CF degradation exerted by the growth substrate, (2) the need for reductant supply to maintain MO activity, and (3) the toxicity of CF degradation products. Under anaerobic conditions, CF degradation was mainly associated to the activity of methanogens, although some examples of CF-degrading sulfate-reducing, fermenting, and acetogenic bacteria are reported in the literature. Higher CF toxicity levels and lower degradation rates were shown by anaerobic systems in comparison to the aerobic ones. Applied physiological and genetic aspects of microbial cometabolism of CF will be presented along with bioremediation perspectives.


Applied and Environmental Microbiology | 2011

Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes.

Martina Cappelletti; Stefano Fedi; Dario Frascari; Hisao Ohtake; Raymond J. Turner; Davide Zannoni

ABSTRACT Rhodococcus sp. strain BCP1, known for its capacity to grow on short-chain n-alkanes (C2 to C7) and to cometabolize chlorinated solvents, was found to also utilize medium- and long-chain n-alkanes (C12 to C24) as energy and carbon sources. To examine this feature in detail, a chromosomal region which includes the alkB gene cluster encoding a non-heme di-iron monooxygenase (alkB), two rubredoxins, and one rubredoxin reductase was cloned from the BCP1 genome. Furthermore, the activity of the alkB gene promoter (P alkB ) was examined in the presence of gaseous, liquid, and solid n-alkanes along with intermediates of the putative n-alkane degradation pathway. A recombinant plasmid, pTPalkBLacZ, was constructed by inserting the lacZ gene downstream of P alkB , and it was used to transform Rhodococcus sp. strain BCP1. Measurements of β-galactosidase activity showed that P alkB is induced by C6 to C22 n-alkanes. Conversely, C2 to C5 and >C22 n-alkanes and alkenes, such as hexene, were not inducers of alkB expression. The effects on P alkB expression induced by alternative carbon sources along with putative products of n-hexane metabolism were also evaluated. This report highlights the great versatility of Rhodococcus sp. strain BCP1 and defines for the first time the alkB gene transcriptional start site and the alkB promoter-inducing capacities for substrates different from n-alkanes in a Rhodococcus strain.


Journal of Hazardous Materials | 2015

In situ aerobic cometabolism of chlorinated solvents: a review.

Dario Frascari; Giulio Zanaroli; Anthony S. Danko

The possible approaches for in situ aerobic cometabolism of aquifers and vadose zones contaminated by chlorinated solvents are critically evaluated. Bioaugmentation of resting-cells previously grown in a fermenter and in-well addition of oxygen and growth substrate appear to be the most promising approaches for aquifer bioremediation. Other solutions involving the sparging of air lead to satisfactory pollutant removals, but must be integrated by the extraction and subsequent treatment of vapors to avoid the dispersion of volatile chlorinated solvents in the atmosphere. Cometabolic bioventing is the only possible approach for the aerobic cometabolic bioremediation of the vadose zone. The examined studies indicate that in situ aerobic cometabolism leads to the biodegradation of a wide range of chlorinated solvents within remediation times that vary between 1 and 17 months. Numerous studies include a simulation of the experimental field data. The modeling of the process attained a high reliability, and represents a crucial tool for the elaboration of field data obtained in pilot tests and for the design of the full-scale systems. Further research is needed to attain higher concentrations of chlorinated solvent degrading microbes and more reliable cost estimates. Lastly, a procedure for the design of full-scale in situ aerobic cometabolic bioremediation processes is proposed.


Bioresource Technology | 2013

A kinetic study of biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of Thermotoga neapolitana.

Dario Frascari; Martina Cappelletti; Jocelia De Sousa Mendes; Andrea Alberini; Francesco Scimonelli; Chiara Manfreda; Luca Longanesi; Davide Zannoni; Davide Pinelli; Stefano Fedi

Batch tests of H2 production from glucose, molasses and cheese whey by suspended and immobilized cells of Thermotoga neapolitana were conducted to develop a kinetic model of the process. H2 production was inhibited by neither H2 (up to 0.7 mg L(-1)) nor O2 (up to 0.2 mg L(-1)). The H2 specific rates obtained at different substrate concentrations were successfully interpolated with Andrews inhibition model. With glucose and molasses, biofilms performed better than suspended cells. The suspended-cell process was successfully scaled-up to a 19-L bioreactor. Assays co-fed with molasses and cheese whey led to higher H2 productivities and H2/substrate yields than the single-substrate tests. The simulation of the suspended-cell continuous-flow process indicated the potential attainment of H2 productivities higher than those of the batch tests (up to 3.6 mmol H2 h(-1) L(-1) for molasses and 0.67 mmol H2 h(-1) L(-1) for cheese whey) and allowed the identification of the optimal dilution rate.


Bioresource Technology | 2013

Aerobic/anaerobic/aerobic sequenced biodegradation of a mixture of chlorinated ethenes, ethanes and methanes in batch bioreactors.

Dario Frascari; Serena Fraraccio; Massimo Nocentini; Davide Pinelli

A novel aerobic/anaerobic/aerobic treatment was implemented in batch reactors containing aquifer materials from a site contaminated by tetrachloroethylene (PCE), trichloroethylene (TCE), vinyl chloride (VC), 1,1,2-trichloroethane (1,1,2-TCA) and chloroform (CF). Consortia grown aerobically on methane, propane, n-pentane and n-hexane completely biodegraded the chlorinated solvent mixture, via aerobic cometabolism of VC, CF, TCE and 1,1,2-TCA, followed by PCE reductive dechlorination (RD) to 1,2-cis-dichlorothylene (cis-DCE) or TCE, and cis-DCE/TCE cometabolism in a further aerobic phase. n-Hexane was the best substrate. No electron donor was supplied for RD, which likely utilized cellular material produced during the aerobic phase. Chloride release was stoichiometric with chlorinated solvent biodegradation. According to the Lepidium sativum ecotoxicity test, a decreased toxicity was observed with propane, n-pentane and n-hexane, but not methane. A kinetic study of PCE RD allowed to estimate the PCE maximum specific rate (0.57 ± 0.07 mg mg(protein)(-1) day(-1)) and half-saturation constant (6.7 ± 1.5 mg L(-1)).


Bioresource Technology | 2013

Trichloroethylene aerobic cometabolism by suspended and immobilized butane-growing microbial consortia: a kinetic study.

Dario Frascari; Giulio Zanaroli; Giacomo Bucchi; Antonella Rosato; Nasrin Tavanaie; Serena Fraraccio; D. Pinelli; Fabio Fava

A kinetic study of butane uptake and trichloroethylene (TCE) aerobic cometabolism was conducted by two suspended-cell (15 and 30°C) and two attached-cell (15 and 30°C) consortia obtained from the indigenous biomass of a TCE-contaminated aquifer. The shift from suspended to attached cells resulted in an increase of butane (15 and 30°C) and TCE (15°C) biodegradation rates, and a significant decrease of butane inhibition on TCE biodegradation. The TCE 15°C maximum specific biodegradation rate was equal to 0.011 mg(TCE ) mg(protein)(-1) d(-1) with suspended cells and 0.021 mg(TCE) mg(protein)(-1) d(-1) with attached cells. The type of mutual butane/TCE inhibition depended on temperature and biomass conditions. On the basis of a continuous-flow simulation, a packed-bed PFR inoculated with the 15 or 30°C attached-cell consortium could attain a 99.96% conversion of the studied sites average TCE concentration with a 0.4-0.5-day hydraulic residence time, with a low effect of temperature on the TCE degradation performances.


Frontiers in Microbiology | 2015

Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

Martina Cappelletti; Alessandro Presentato; Giorgio Milazzo; Raymond J. Turner; Stefano Fedi; Dario Frascari; Davide Zannoni

Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step.


Journal of Hazardous Materials | 2016

Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

João M. Jesus; Dario Frascari; Tatiana A. Pozdniakova; Anthony S. Danko

This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided.


Water Research | 2012

A continuous-flow approach for the development of an anaerobic consortium capable of an effective biomethanization of a mechanically sorted organic fraction of municipal solid waste as the sole substrate

Lorenzo Bertin; Cristina Bettini; Giulio Zanaroli; Dario Frascari; Fabio Fava

An effective mesophilic continuous anaerobic digestion process fed only with a mechanically sorted organic fraction of municipal solid waste (MS-OFMSW) was developed. During a preliminary 3-month experimental phase, the microbial consortium was acclimated toward MS-OFMSW by initially filling the reactor with cattle manure and then continuously feeding it with MS-OFMSW. The Hydraulic Retention Time (HRT) and Organic Loading Rate (OLR) were 23 days and 2.5 g/L/day, respectively. After 4 weeks, the reactor reached stationary performances (84% COD removal yield, 0.15 L(CH₄)/g(COD removed) methane production yield). The acclimated consortium was then employed in a second run in which the reactor was operated under steady state conditions at the previous HRT and OLR for 73 days. The COD removal and the methane production yield increased up to 87% and 0.25 L(CH₄) /g(CODremoved), respectively. The capability of the acclimated consortium to biomethanize MS-OFMSW was further studied via batch digestion experiments, carried out by inoculating the target waste with reactor effluents collected at the beginning of first run and at the end of the first and second run. The best normalized methane production (0.39 L(CH₄) /g(initial COD)) was obtained with the inoculum collected at the end of the second run. Molecular analysis of the microbial community occurring in the reactor during the two sequential runs indicated that the progressive improvement of the process performances was closely related to the selection and enrichment of specific hydrolytic and acidogenic bacteria in the reactor.


International Journal of Chemical Engineering | 2016

Batch and Continuous Flow Adsorption of Phenolic Compounds from Olive Mill Wastewater: A Comparison between Nonionic and Ion Exchange Resins

Davide Pinelli; Aurora Esther Molina Bacca; Ankita Kaushik; Subhankar Basu; Massimo Nocentini; Lorenzo Bertin; Dario Frascari

The goals of this work were (i) to compare two anion ion exchange resins (IRA958 Cl and IRA67) and a nonionic resin (XAD16) in terms of phenolic compounds adsorption capacity from olive mill wastewater and (ii) to compare the adsorption capacity of the best resin on columns of different length. The ion exchange resins performed worse than nonionic XAD16 in terms of resin utilization efficiency (20% versus 43%) and phenolic compounds/COD enrichment factor (1.0 versus 2.5). The addition of volatile fatty acids did not hinder phenolic compounds adsorption on either resin, suggesting a noncompetitive adsorption mechanism. A pH increase from 4.9 to 7.2 did not affect the result of this comparison. For the best performing resin (XAD16), an increase in column length from 0.5 to 1.8 m determined an increase in resin utilization efficiency (from 12% to 43%), resin productivity (from 3.4 to 7.6 ), and phenolics/COD enrichment factor (from 1.2 to 2.5). An axial dispersion model with nonequilibrium adsorption accurately interpreted the phenolic compounds and COD experimental curves.

Collaboration


Dive into the Dario Frascari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge