Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig R. Roy is active.

Publication


Featured researches published by Craig R. Roy.


PLOS Pathogens | 2006

Flagellin-Deficient Legionella Mutants Evade Caspase-1- and Naip5-Mediated Macrophage Immunity

Tao Ren; Dario S. Zamboni; Craig R. Roy; William F. Dietrich; Russell E. Vance

Macrophages from C57BL/6J (B6) mice restrict growth of the intracellular bacterial pathogen Legionella pneumophila. Restriction of bacterial growth requires caspase-1 and the leucine-rich repeat-containing protein Naip5 (Birc1e). We identified mutants of L. pneumophila that evade macrophage innate immunity. All mutants were deficient in expression of flagellin, the primary flagellar subunit, and failed to induce caspase-1-mediated macrophage death. Interestingly, a previously isolated flagellar mutant (fliI) that expresses, but does not assemble, flagellin did not replicate in macrophages, and induced macrophage death. Thus, flagellin itself, not flagella or motility, is required to initiate macrophage innate immunity. Immunity to Legionella did not require MyD88, an essential adaptor for toll-like receptor 5 (TLR5) signaling. Moreover, flagellin of Legionella and Salmonella induced cytotoxicity when delivered to the macrophage cytosol using Escherichia coli as a heterologous host. It thus appears that macrophages sense cytosolic flagellin via a TLR5-independent pathway that leads to rapid caspase-1-dependent cell death and provides defense against intracellular bacterial pathogens.


Nature Cell Biology | 2002

Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites

Jonathan C. Kagan; Craig R. Roy

It is unknown how Legionella pneumophila cells escape the degradative lysosomal pathway after phagocytosis by macrophages and replicate in an organelle derived from the endoplasmic reticulum. Here we show that, after internalization, L. pneumophila-containing phagosomes recruit early secretory vesicles. Once L. pneumophila phagosomes have intercepted early secretory vesicles they begin to acquire proteins residing in transitional and rough endoplasmic reticulum. The functions of Sar1 and ADP-ribosylation factor-1 are important for biogenesis of the L. pneumophila replicative organelle. These data indicate that L. pneumophila intercepts vesicular traffic from endoplasmic-reticulum exit sites to create an organelle that permits intracellular replication and prevents destruction by the host cell.


Annual Review of Cell and Developmental Biology | 2010

Modulation of Host Cell Function by Legionella pneumophila Type IV Effectors

Andree Hubber; Craig R. Roy

Macrophages and protozoa ingest bacteria by phagocytosis and destroy these microbes using a conserved pathway that mediates fusion of the phagosome with lysosomes. To survive within phagocytic host cells, bacterial pathogens have evolved a variety of strategies to avoid fusion with lysosomes. A virulence strategy used by the intracellular pathogen Legionella pneumophila is to manipulate host cellular processes using bacterial proteins that are delivered into the cytosolic compartment of the host cell by a specialized secretion system called Dot/Icm. The proteins delivered by the Dot/Icm system target host factors that play evolutionarily conserved roles in controlling membrane transport in eukaryotic cells, which enables L. pneumophila to create an endoplasmic reticulum-like vacuole that supports intracellular replication in both protozoan and mammalian host cells. This review focuses on intracellular trafficking of L. pneumophila and describes how bacterial proteins contribute to modulation of host processes required for survival within host cells.


Journal of Cell Biology | 2002

The road less traveled: transport of Legionella to the endoplasmic reticulum

Craig R. Roy; Lewis G. Tilney

Phagosomes containing the bacterial pathogen Legionella pneumophila are transported to the ER after macrophage internalization. To modulate phagosome transport, Legionella use a specialized secretion system that injects bacterial proteins into eukaryotic cells. This review will focus on recent studies that have identified bacterial proteins and host processes that play a concerted role in transporting Legionella to the ER.


Science | 2008

Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors.

Xiaoxiao Pan; Anja Lührmann; Ayano Satoh; Michelle A. Laskowski-Arce; Craig R. Roy

Specialized secretion systems are used by many bacteria to deliver effector proteins into host cells that can either mimic or disrupt the function of eukaryotic factors. We found that the intracellular pathogens Legionella pneumophila and Coxiella burnetii use a type IV secretion system to deliver into eukaryotic cells a large number of different bacterial proteins containing ankyrin repeat homology domains called Anks. The L. pneumophila AnkX protein prevented microtubule-dependent vesicular transport to interfere with fusion of the L. pneumophila-containing vacuole with late endosomes after infection of macrophages, which demonstrates that Ank proteins have effector functions important for bacterial infection of eukaryotic host cells.


Nature Cell Biology | 2006

The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor

Takahiro Murata; Anna M. Delprato; Alyssa Ingmundson; Derek Toomre; David G. Lambright; Craig R. Roy

The intracellular pathogen Legionella pneumophila avoids fusion with lysosomes and subverts membrane transport from the endoplasmic reticulum to create an organelle that supports bacterial replication. Transport of endoplasmic reticulum-derived vesicles to the Legionella-containing vacuole (LCV) requires bacterial proteins that are translocated into host cells by a type IV secretion apparatus called Dot/Icm. Recent observations have revealed recruitment of the host GTPase Rab1 to the LCV by a process requiring the Dot/Icm system. Here, a visual screen was used to identify L. pneumophila mutants with defects in Rab1 recruitment. One of the factors identified in this screen was DrrA, a new Dot/Icm substrate protein translocated into host cells. We show that DrrA is a potent and highly specific Rab1 guanine nucleotide-exchange factor (GEF). DrrA can disrupt Rab1-mediated secretory transport to the Golgi apparatus by competing with endogenous exchange factors to recruit and activate Rab1 on plasma membrane-derived organelles. These data establish that intracellular pathogens have the capacity to directly modulate the activation state of a specific member of the Rab family of GTPases and thus further our understanding of the mechanisms used by bacterial pathogens to manipulate host vesicular transport.


Nature Cell Biology | 1999

Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth.

Jörn Coers; Catherine Monahan; Craig R. Roy

Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth


Nature | 2007

Legionella pneumophila proteins that regulate Rab1 membrane cycling

Alyssa Ingmundson; Anna M. Delprato; David G. Lambright; Craig R. Roy

Rab1 is a GTPase that regulates the transport of endoplasmic-reticulum-derived vesicles in eukaryotic cells. The intracellular pathogen Legionella pneumophila subverts Rab1 function to create a vacuole that supports bacterial replication by a mechanism that is not well understood. Here we describe L. pneumophila proteins that control Rab1 activity directly. We show that a region in the DrrA (defect in Rab1 recruitment A) protein required for recruitment of Rab1 to membranes functions as a guanine nucleotide dissociation inhibitor displacement factor. A second region of the DrrA protein stimulated Rab1 activation by functioning as a guanine nucleotide exchange factor. The LepB protein was found to inactivate Rab1 by stimulating GTP hydrolysis, indicating that LepB has GTPase-activating protein activity that regulates removal of Rab proteins from membranes. Thus, L. pneumophila encodes proteins that regulate three distinct biochemical reactions critical for Rab GTPase membrane cycling to redirect Rab1 to the pathogen-occupied vacuole and to control Rab1 function.


Journal of Experimental Medicine | 2004

Legionella Subvert the Functions of Rab1 and Sec22b to Create a Replicative Organelle

Jonathan C. Kagan; Mary-Pat Stein; Marc Pypaert; Craig R. Roy

Legionella pneumophila is a bacterial pathogen that infects eukaryotic host cells and replicates inside a specialized organelle that is morphologically similar to the endoplasmic reticulum (ER). To better understand the molecular mechanisms governing transport of the Legionella-containing vacuole (LCV), we have identified host proteins that participate in the conversion of the LCV into a replicative organelle. Our data show that Rab1 is recruited to the LCV within minutes of uptake. Rab1 recruitment to the LCV precedes remodeling of this compartment by ER-derived vesicles. Genetic inhibition studies demonstrate that Rab1 is important for the recruitment of ER-derived vesicles to the LCV and that inhibiting Rab1 function abrogates intracellular growth of Legionella. Morphological studies indicate that the Sec22b protein is located on ER-derived vesicles recruited to the LCV and that Sec22b is delivered to the LCV membrane. Sec22b function was found to be important for biogenesis of the specialized organelle that supports Legionella replication. These studies demonstrate that Legionella has the ability to subvert Rab1 and Sec22b function to facilitate the transport and fusion of ER-derived vesicles with the LCV, resulting in the formation of a specialized organelle that can support bacterial replication.


Nature | 2011

Modulation of Rab GTPase function by a protein phosphocholine transferase

Shaeri Mukherjee; Xiaoyun Liu; Kohei Arasaki; Justin A. McDonough; Jorge E. Galán; Craig R. Roy

The intracellular pathogen Legionella pneumophila modulates the activity of host GTPases to direct the transport and assembly of the membrane-bound compartment in which it resides. In vitro studies have indicated that the Legionella protein DrrA post-translationally modifies the GTPase Rab1 by a process called AMPylation. Here we used mass spectrometry to investigate post-translational modifications to Rab1 that occur during infection of host cells by Legionella. Consistent with in vitro studies, DrrA-mediated AMPylation of a conserved tyrosine residue in the switch II region of Rab1 was detected during infection. In addition, a modification to an adjacent serine residue in Rab1 was discovered, which was independent of DrrA. The Legionella effector protein AnkX was required for this modification. Biochemical studies determined that AnkX directly mediates the covalent attachment of a phosphocholine moiety to Rab1. This phosphocholine transferase activity used CDP-choline as a substrate and required a conserved histidine residue located in the FIC domain of the AnkX protein. During infection, AnkX modified both Rab1 and Rab35, which explains how this protein modulates membrane transport through both the endocytic and exocytic pathways of the host cell. Thus, phosphocholination of Rab GTPases represents a mechanism by which bacterial FIC-domain-containing proteins can alter host-cell functions.

Collaboration


Dive into the Craig R. Roy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunny Shin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jonathan C. Kagan

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacqueline Cherfils

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge