Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dario Siniscalco is active.

Publication


Featured researches published by Dario Siniscalco.


Bone | 2009

The endovanilloid/endocannabinoid system in human osteoclasts: Possible involvement in bone formation and resorption

Francesco Rossi; Dario Siniscalco; Livio Luongo; L. De Petrocellis; Giulia Bellini; Stefania Petrosino; Marco Torella; C. Santoro; Bruno Nobili; Silverio Perrotta; V. Di Marzo; Sabatino Maione

Recent studies suggest a role for the endocannabinoid/endovanilloid anandamide in the regulation of bone resorption/formation balance in mice. Here, we examined the co-expression of the transient receptor potential vanilloid type 1 (TRPV1) and the cannabinoid CB1/CB2 receptors together with N-acylphosphatidylethanolamine-hydrolizing phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH), the two enzymes responsible of the synthesis and catabolism of anandamide respectively, in human osteoclasts. Co-expression of TRPV1, CB1/CB2, NAPE-PLD and FAAH was found in both human osteoclast cultures and in native osteoclasts from human bone biopsies. Moreover, agonist-evoked calcium entry indicated that the TRPV1 receptor is functionally active in vitro. Consistently, biomolecular and functional experiments showed that resiniferatoxin (RTX), a selective TRPV1 receptor agonist, increased the expression and the activity of TRAP and cathepsin K, two specific osteoclast biomarkers. The evidence that cannabinoid and vanilloid receptors are co-expressed in human osteoclasts suggests that they might cross-talk to modulate the intrinsic balance of bone mineralization and resorption by different actions of anandamide through TRPV1 and cannabinoid receptors. The presence of the endocannabinoid/endovanilloid proteins in human osteoclasts will likely have implications for the management of bone demineralization associated syndrome (i. e. osteoporosis).


British Journal of Pharmacology | 2009

AM404, an inhibitor of anandamide uptake, prevents pain behaviour and modulates cytokine and apoptotic pathways in a rat model of neuropathic pain

Barbara Costa; Dario Siniscalco; Anna Elisa Trovato; Francesca Comelli; Maria Luisa Sotgiu; Mariapia Colleoni; Sabatino Maione; Francesco Rossi; Gabriella Giagnoni

1 An attractive alternative to the use of direct agonists at the cannabinoid receptor type 1 (CB1) in the control of neuropathic pain may be to potentiate the actions of endogenous cannabinoids. Thus, the effects of AM404, an inhibitor of anandamide uptake, were assessed in an experimental model of neuropathic pain in rats. 2 Daily treatment with AM404 prevented, time‐ and dose‐dependently, the development of thermal hyperalgesia and mechanical allodynia in neuropathic rats. Antagonists at cannabinoid CB1 or CB2 receptors, or at the transient receptor potential vanilloid type 1 receptor, each partially reversed effects induced by AM404. A complete reversal was obtained when the three antagonists were given together, suggesting that all three receptors are involved. 3 AM404 treatment affected two pathways involved in the generation and maintenance of neuropathic pain, one mediated by nitric oxide (NO) and the other by cytokines. AM404 completely prevented the overproduction of NO and the overexpression of nNOS, inhibited the increase in tumour necrosis factor α (TNFα) and enhanced the production of interleukin‐10. Both NO and TNFα are known to contribute to the apoptotic process, which plays an important role in the establishment of chronic pain states. AM404 treatment prevented the increase in the ratio between pro‐ and anti‐apoptotic gene bax/bcl‐2 expression observed in the spinal cord of neuropathic rats. 4 Taken together, these findings suggest that inhibition of endocannabinoid uptake, by blocking the putative anandamide carrier, results in the relief of neuropathic pain and may represent a novel strategy for treating chronic pain.


Neuropharmacology | 2004

Blockade of glutamate mGlu5 receptors in a rat model of neuropathic pain prevents early over-expression of pro-apoptotic genes and morphological changes in dorsal horn lamina II.

Vito de Novellis; Dario Siniscalco; Umberto Galderisi; Carlo Fuccio; Maria Nolano; Lucio Santoro; A. Cascino; Kevin A. Roth; Francesco Rossi; Sabatino Maione

We used rats with a sciatic nerve chronic constrictive injury (CCI) and combined behavioural, molecular and morphological approaches to assess the involvement of mGlu5 receptors in neuropathic pain-associated hyperalgesia and spinal cord neuron apoptosis. Mechanical and thermal hyperalgesia developed 2-3 days after surgery. Morphological changes in the ipsilateral L4-L5 lamina II consisted of: (i) cell loss (38 +/- 5%), (ii) increased TUNEL-positive profiles, (iii) decreased SP-immunoreactive primary afferents, and (iv) reactive gliosis. Molecular expression data suggested a bi-phasic response of bcl-2 family genes in CCI. An early (2-3 days post-CCI) E2F1- and p53-independent apoptosis appeared in the spinal cord as the pro-apoptotic bax gene increased (320 +/- 19%), followed by an increased expression of the anti-apoptotic bcl-2 and bcl-xL genes (60 +/- 11% and 110 +/- 15%, respectively) 7 days from CCI. The selective mGlu5 receptor antagonist, MPEP (2 mg/kg i.p. twice daily), prevented the development of thermal hyperalgesia and transiently reduced mechanical hyperalgesia. Despite the MPEP treatment, which normalised bax/bcl-2 and bcl-xL/bcl-xS ratios at all times post-CCI, mechanical hyperalgesia reappeared by 7 days after CCI. Similarly, MPEP was cytoprotective at 3, but not 7 days post-CCI. This study shows that: (a) spinal cord neuron loss may be triggered by a p53- and E2F1-independent apoptosis in lamina II with the participation of glutamate mGlu5 receptors, (b) these receptors seem to be involved transiently, as their blockade was no longer protective by 7 days CCI, and (c) this delayed cell death occurred in the absence of Bax activation, suggesting the involvement of an alternative death pathway.


Cerebral Cortex | 2012

TRPV1-Dependent and -Independent Alterations in the Limbic Cortex of Neuropathic Mice: Impact on Glial Caspases and Pain Perception

Catia Giordano; Luigia Cristino; Livio Luongo; Dario Siniscalco; Stefania Petrosino; Fabiana Piscitelli; Ida Marabese; Luisa Gatta; Francesca Rossi; Roberta Imperatore; Enza Palazzo; Vito de Novellis; Vincenzo Di Marzo; Sabatino Maione

During neuropathic pain, caspases are activated in the limbic cortex. We investigated the role of TRPV1 channels and glial caspases in the mouse prelimbic and infralimbic (PL-IL) cortex after spared nerve injury (SNI). Reverse transcriptase-polymerase chain reaction, western blots, and immunfluorescence showed overexpression of several caspases in the PL-IL cortex 7 days postinjury. Caspase-3 release and upregulation of AMPA receptors in microglia, caspase-1 and IL-1β release in astrocytes, and upregulation of Il-1 receptor-1, TRPV1, and VGluT1 in glutamatergic neurons, were also observed. Of these alterations, only those in astrocytes persisted in SNI Trpv1(-/-) mice. A pan-caspase inhibitor, injected into the PL-IL cortex, reduced mechanical allodynia, this effect being reduced but not abolished in Trpv1(-/-) mice. Single-unit extracellular recordings in vivo following electrical stimulation of basolateral amygdala or application of pressure on the hind paw, showed increased excitatory pyramidal neuron activity in the SNI PL-IL cortex, which also contained higher levels of the endocannabinoid 2-arachidonoylglycerol. Intra-PL-IL cortex injection of mGluR5 and NMDA receptor antagonists and AMPA exacerbated, whereas TRPV1 and AMPA receptor antagonists and a CB(1) agonist inhibited, allodynia. We suggest that SNI triggers both TRPV1-dependent and independent glutamate- and caspase-mediated cross-talk among IL-PL cortex neurons and glia, which either participates or counteracts pain.


Frontiers in Integrative Neuroscience | 2011

Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice.

Dario Siniscalco; Catia Giordano; Umberto Galderisi; Livio Luongo; Vito de Novellis; Francesco Rossi; Sabatino Maione

Background: Neuropathic pain (NP) is an incurable disease caused by a primary lesion in the nervous system. NP is a progressive nervous system disease that results from poorly defined neurophysiological and neurochemical changes. Its treatment is very difficult. Current available therapeutic drugs have a generalized nature, sometime acting only on the temporal pain properties rather than targeting the several mechanisms underlying the generation and propagation of pain. Methods: Using biomolecular and immunohistochemical methods, we investigated the effect of the systemic injection of human mesenchymal stem cells (hMSCs) on NP relief. We used the spared nerve injury (SNI) model of NP in the mouse. hMSCs were injected into the tail vein of the mouse. Stem cell injection was performed 4 days after sciatic nerve surgery. Neuropathic mice were monitored every 10 days starting from day 11 until 90 days after surgery. Results: hMSCs were able to reduce pain-like behaviors, such as mechanical allodynia and thermal hyperalgesia, once injected into the tail vein. An anti-nociceptive effect was detectable from day 11 post surgery (7 days post cell injection). hMSCs were mainly able to home in the spinal cord and pre-frontal cortex of neuropathic mice. Injected hMSCs reduced the protein levels of the mouse pro-inflammatory interleukin IL-1β and IL-17 and increased protein levels of the mouse anti-inflammatory interleukin IL-10, and the marker of alternatively activated macrophages CD106 in the spinal cord of SNI mice. Conclusion: As a potential mechanism of action of hMSCs in reducing pain, we suggest that they could exert their beneficial action through a restorative mechanism involving: (i) a cell-to-cell contact activation mechanism, through which spinal cord homed hMSCs are responsible for switching pro-inflammatory macrophages to anti-inflammatory macrophages; (ii) secretion of a broad spectrum of molecules to communicate with other cell types. This study could provide novel findings in MSC pre-clinical biology and their therapeutic potential in regenerative medicine.


Expert Opinion on Biological Therapy | 2010

Mesenchymal stem cell therapy for the treatment of chronic obstructive pulmonary disease

Bruno D'Agostino; Nikol Sullo; Dario Siniscalco; Antonella De Angelis; Francesco Rossi

Recent studies have revealed that adult stem cells such as bone marrow-derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells may be a potent next-generation therapy for COPD. Pathogenesis of COPD is characterized by an upregulation of inflammatory processes leading to irreversible events such as apoptosis of epithelial cells, proteolysis of the terminal air-space and lung extracellular matrix components. The available pharmacological treatments are essentially symptomatic, therefore, there is a need to develop more effective therapeutic strategies. It has been previously demonstrated that transplanted MSC home to the lung in response to lung injury and adopt phenotypes of alveolar epithelial cells, endothelial cells, fibroblasts and bronchial epithelial cells. However, engraftment and differentiation are now felt to be rare occurrences and other mechanisms might be involved and play a more important role. Importantly, MSCs protect lung tissue through suppression of proinflammatory cytokines, and through triggering production of reparative growth factors. Accordingly, it is not clear if and how these cells will be able to repair, to slow or to prevent the disease. This article reviews recent advances in regenerative medicine in COPD and highlights that their potential application although promising and very attractive, are still a far away opinion.


Neuroreport | 2002

Apoptotic genes expression in the lumbar dorsal horn in a model neuropathic pain in rat.

Sabatino Maione; Dario Siniscalco; Umberto Galderisi; Vito de Novellis; Roberto Uliano; Giovanni Di Bernardo; Liberato Berrino; A. Cascino; Francesco Rossi

This study combines behavioural, molecular and morphological approaches to assess the occurrence of apoptosis in the rat spinal cord by 14-day sciatic nerve chronic constrictive injury (CCI). Thermal allodynia developed in the corresponding footpad 2–3 days after surgery, while morphological features, evaluated 14 days later, consisted in a decrease (23±7%) in laminae I–III cell number ipsilateral to CCI. Apoptosis occurrence was possibly suggested by the presence of some TUNEL-positive nuclei in this territory. The mRNA expression levels of the bcl-2 genes family was changed as follows: bax increased up to 40% in CCI vs the sham rats, while bcl-2 did not change; bcl-xS massively decreased (by 70% and 100%), while bcl-xL increased (by 40%) in CCI rats. Western blot analysis showed no change either on poly-ADP ribose polymerase (PARP) or p53 transcription factor in CCI and sham rats. These data suggest that in a chronic pain condition, where the acute phase has already resolved, specific apoptotic genes are still operative and possibly may serve as a critical change for cells surviving in the chronic pain state.


Journal of Autism and Developmental Disorders | 2012

The Expression of Caspases is Enhanced in Peripheral Blood Mononuclear Cells of Autism Spectrum Disorder Patients

Dario Siniscalco; Anna Sapone; Catia Giordano; Alessandra Cirillo; Vito de Novellis; Laura de Magistris; Francesco Rossi; Alessio Fasano; Sabatino Maione; Nicola Antonucci

Autism and autism spectrum disorders (ASDs) are heterogeneous complex neuro-developmental disorders characterized by dysfunctions in social interaction and communication skills. Their pathogenesis has been linked to interactions between genes and environmental factors. Consistent with the evidence of certain similarities between immune cells and neurons, autistic children also show an altered immune response of peripheral blood mononuclear cells (PBMCs). In this study, we investigated the activation of caspases, cysteinyl aspartate-specific proteases involved in apoptosis and several other cell functions in PBMCs from 15 ASD children compared to age-matched normal healthy developing controls. The mRNA levels for caspase-1, -2, -4, -5 were significantly increased in ASD children as compared to healthy subjects. Protein levels of Caspase-3, -7, -12 were also increased in ASD patients. Our data are suggestive of a possible role of the capsase pathway in ASD clinical outcome and of the use of caspase as potential diagnostic and/or therapeutic tools in ASD management.


Current Neuropharmacology | 2011

Role of neurotrophins in neuropathic pain.

Dario Siniscalco; Catia Giordano; Francesco Rossi; Sabatino Maione; Vito de Novellis

Neurotrophins (NTs) belong to a family of structurally and functionally related proteins, they are the subsets of neurotrophic factors. Neurotrophins are responsible for diverse actions in the developing peripheral and central nervous systems. They are important regulators of neuronal function, affecting neuronal survival and growth. They are able to regulate cell death and survival in development as well as in pathophysiologic states. NTs and their receptors are expressed in areas of the brain that undergo plasticity, indicating that they are able to modulate synaptic plasticity. Recently, neurotrophins have been shown to play significant roles in the development and transmission of neuropathic pain. Neuropathic pain is initiated by a primary lesion or dysfunction in the nervous system. It has a huge impact on the quality of life. It is debilitating and often has an associated degree of depression that contributes to decreasing human well being. Neuropathic pain ranks at the first place for sanitary costs. Neuropathic pain treatment is extremely difficult. Several molecular pathways are involved, making it a very complex disease. Excitatory or inhibitory pathways controlling neuropathic pain development show altered gene expression, caused by peripheral nerve injury. At present there are no valid treatments over time and neuropathic pain can be classified as an incurable disease. Nowadays, pain research is directing towards new molecular methods. By targeting neurotrophin molecules it may be possible to provide better pain control than currently available.


Therapeutic Advances in Respiratory Disease | 2008

Review: Stem cell therapy: the great promise in lung disease

Dario Siniscalco; Nikol Sullo; Sabatino Maione; Francesco Rossi; Bruno D'Agostino

Lung injuries are leading causes of morbidity and mortality worldwide. Pulmonary diseases such as asthma or chronic obstructive pulmonary disease characterized by loss of lung elasticity, small airway tethers, and luminal obstruction with inflammatory mucoid secretions, or idiopathic pulmonary fibrosis characterized by excessive matrix deposition and destruction of the normal lung architecture, have essentially symptomatic treatments and their management is costly to the health care system. Regeneration of tissue by stem cells from endogenous, exogenous, and even genetically modified cells is a promising novel therapy. The use of adult stem cells to help with lung regeneration and repair could be a newer technology in clinical and regenerative medicine. In fact, different studies have shown that bone marrow progenitor cells contribute to repair and remodeling of lung in animal models of progressive pulmonary hypertension. Therefore, lung stem cell biology may provide novel approaches to therapy and could represent a great promise for the future of molecular medicine. In fact, several diseases can be slowed or even blocked by stem cell transplantation.

Collaboration


Dive into the Dario Siniscalco's collaboration.

Top Co-Authors

Avatar

Sabatino Maione

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Francesco Rossi

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Nicola Antonucci

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Catia Giordano

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Livio Luongo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Vito de Novellis

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enza Palazzo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Laura de Magistris

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Alessandra Cirillo

Seconda Università degli Studi di Napoli

View shared research outputs
Researchain Logo
Decentralizing Knowledge