Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darius Babusis is active.

Publication


Featured researches published by Darius Babusis.


Journal of Medicinal Chemistry | 2009

Discovery of (S)-N-{2-[1-(3-Ethoxy-4-methoxyphenyl)-2-methanesulfonylethyl]-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl}acetamide (Apremilast), a Potent and Orally Active Phosphodiesterase 4 and Tumor Necrosis Factor-α Inhibitor

Hon-Wah Man; Peter H. Schafer; Lu Min Wong; Rebecca T. Patterson; Laura G. Corral; Heather Raymon; Kate Blease; Jim Leisten; Michael A. Shirley; Yang Tang; Darius Babusis; Roger Shen-Chu Chen; Dave Stirling; George W. Muller

In this communication, we report the discovery of 1S (apremilast), a novel potent and orally active phosphodiesterase 4 (PDE4) and tumor necrosis factor-alpha inhibitor. The optimization of previously reported 3-(1,3-dioxo-1,3-dihydroisoindol-2-yl)-3-(3,4-dimethoxyphenyl)propionic acid PDE4 inhibitors led to this series of sulfone analogues. Evaluation of the structure-activity relationship of substitutions on the phthalimide group led to the discovery of an acetylamino analogue 1S, which is currently in clinical trials.


Antimicrobial Agents and Chemotherapy | 2015

Implications of Efficient Hepatic Delivery by Tenofovir Alafenamide (GS-7340) for Hepatitis B Virus Therapy

Eisuke Murakami; Ting Wang; Yeojin Park; Jia Hao; Eve-Irene Lepist; Darius Babusis; Adrian S. Ray

ABSTRACT Tenofovir alafenamide (TAF) is a prodrug of tenofovir (TFV) currently in clinical evaluation for treatment for HIV and hepatitis B virus (HBV) infections. Since the target tissue for HBV is the liver, the hepatic delivery and metabolism of TAF in primary human hepatocytes in vitro and in dogs in vivo were evaluated here. Incubation of primary human hepatocytes with TAF resulted in high levels of the pharmacologically active metabolite tenofovir diphosphate (TFV-DP), which persisted in the cell with a half-life of >24 h. In addition to passive permeability, studies of transfected cell lines suggest that the hepatic uptake of TAF is also facilitated by the organic anion-transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3, respectively). In order to inhibit HBV reverse transcriptase, TAF must be converted to the pharmacologically active form, TFV-DP. While cathepsin A is known to be the major enzyme hydrolyzing TAF in cells targeted by HIV, including lymphocytes and macrophages, TAF was primarily hydrolyzed by carboxylesterase 1 (CES1) in primary human hepatocytes, with cathepsin A making a small contribution. Following oral administration of TAF to dogs for 7 days, TAF was rapidly absorbed. The appearance of the major metabolite TFV in plasma was accompanied by a rapid decline in circulating TAF. Consistent with the in vitro data, high and persistent levels of TFV-DP were observed in dog livers. Notably, higher liver TFV-DP levels were observed after administration of TAF than those given TDF. These results support the clinical testing of once-daily low-dose TAF for the treatment of HBV infection.


Molecular Pharmaceutics | 2013

Mechanism for Effective Lymphoid Cell and Tissue Loading Following Oral Administration of Nucleotide Prodrug GS-7340

Darius Babusis; Truc K. Phan; William A. Lee; William J. Watkins; Adrian S. Ray

GS-7340 is a prodrug of tenofovir (TFV) that more efficiently delivers TFV into lymphoid cells and tissues than the clinically used prodrug TFV disoproxil fumarate, resulting in higher antiviral potency at greatly reduced doses and lower systemic TFV exposure. First-pass extraction by the intestine and liver represents substantial barriers to the oral delivery of prodrugs designed for rapid intracellular hydrolysis. In order to understand how GS-7340 reduces first-pass clearance to be an effective oral prodrug, its permeability and stability were characterized in vitro and detailed pharmacokinetic studies were completed in dogs. GS-7340 showed concentration-dependent permeability through monolayers of caco-2 cells and dose-dependent oral bioavailability in dogs, increasing from 1.7% at 2 mg/kg to 24.7% at 20 mg/kg, suggesting saturable intestinal efflux transport. Taking into account a 65% hepatic extraction measured in portal vein cannulated dogs, high dose GS-7340 is nearly completely absorbed. Consistent with the proposed role of intestinal efflux transport, coadministration of low dose GS-7340 with a transport inhibitor substantially increased GS-7340 exposure. The result of effective oral absorption and efficient lymphoid cell loading was reflected in the high and persistent levels of the pharmacologically active metabolite, TFV diphosphate, in peripheral blood mononuclear cells following oral administration to dogs. In conclusion, GS-7340 reaches the systemic circulation to effectively load target cells by saturating intestinal efflux transporters, facilitated by its high solubility, and by maintaining sufficient stability in intestinal and hepatic tissue.


PLOS ONE | 2013

Pomalidomide Shows Significant Therapeutic Activity against CNS Lymphoma with a Major Impact on the Tumor Microenvironment in Murine Models

Zhimin Li; Yushi Qiu; Peng Huang; Brandy Edenfield; Jason Katz; Darius Babusis; Yang Tang; Michael A. Shirely; Mehran F. Moghaddam; John A. Copland; Han W. Tun

Primary CNS lymphoma carries a poor prognosis. Novel therapeutic agents are urgently needed. Pomalidomide (POM) is a novel immunomodulatory drug with anti-lymphoma activity. CNS pharmacokinetic analysis was performed in rats to assess the CNS penetration of POM. Preclinical evaluation of POM was performed in two murine models to assess its therapeutic activity against CNS lymphoma. The impact of POM on the CNS lymphoma immune microenvironment was evaluated by immunohistochemistry and immunofluorescence. In vitro cell culture experiments were carried out to further investigate the impact of POM on the biology of macrophages. POM crosses the blood brain barrier with CNS penetration of ~ 39%. Preclinical evaluations showed that it had significant therapeutic activity against CNS lymphoma with significant reduction in tumor growth rate and prolongation of survival, that it had a major impact on the tumor microenvironment with an increase in macrophages and natural killer cells, and that it decreased M2-polarized tumor-associated macrophages and increased M1-polarized macrophages when macrophages were evaluated based on polarization status. In vitro studies using various macrophage models showed that POM converted the polarization status of IL4-stimulated macrophages from M2 to M1, that M2 to M1 conversion by POM in the polarization status of lymphoma-associated macrophages is dependent on the presence of NK cells, that POM induced M2 to M1 conversion in the polarization of macrophages by inactivating STAT6 signaling and activating STAT1 signaling, and that POM functionally increased the phagocytic activity of macrophages. Based on our findings, POM is a promising therapeutic agent for CNS lymphoma with excellent CNS penetration, significant preclinical therapeutic activity, and a major impact on the tumor microenvironment. It can induce significant biological changes in tumor-associated macrophages, which likely play a major role in its therapeutic activity against CNS lymphoma. POM should be further evaluated in clinical trials.


Bioorganic & Medicinal Chemistry Letters | 2013

Isosteric analogs of lenalidomide and pomalidomide: synthesis and biological activity.

Alexander L. Ruchelman; Hon-Wah Man; Weihong Zhang; Roger Shen-Chu Chen; Lori Capone; Jian Kang; Anastasia Parton; Laura G. Corral; Peter H. Schafer; Darius Babusis; Mehran F. Moghaddam; Yang Tang; Michael A. Shirley; George W. Muller

A series of analogs of the immunomodulary drugs lenalidomide (1) and pomalidomide (2), in which the amino group is replaced with various isosteres, was prepared and assayed for immunomodulatory activity and activity against cancer cell lines. The 4-methyl and 4-chloro analogs 4 and 15, respectively, displayed potent inhibition of tumor necrosis factor-α (TNF-α) in LPS-stimulated hPBMC, potent stimulation of IL-2 in a human T cell co-stimulation assay, and anti-proliferative activity against the Namalwa lymphoma cell line. Both of these analogs displayed oral bioavailability in rat.


Antimicrobial Agents and Chemotherapy | 2016

Role of Mitochondrial RNA Polymerase in the Toxicity of Nucleotide Inhibitors of Hepatitis C Virus

Joy Y. Feng; Yili Xu; Ona Barauskas; Jason K. Perry; Shekeba Ahmadyar; George Stepan; Helen Yu; Darius Babusis; Yeojin Park; Krista McCutcheon; Michel Perron; Brian E. Schultz; Roman Sakowicz; Adrian S. Ray

ABSTRACT Toxicity has emerged during the clinical development of many but not all nucleotide inhibitors (NI) of hepatitis C virus (HCV). To better understand the mechanism for adverse events, clinically relevant HCV NI were characterized in biochemical and cellular assays, including assays of decreased viability in multiple cell lines and primary cells, interaction with human DNA and RNA polymerases, and inhibition of mitochondrial protein synthesis and respiration. NI that were incorporated by the mitochondrial RNA polymerase (PolRMT) inhibited mitochondrial protein synthesis and showed a corresponding decrease in mitochondrial oxygen consumption in cells. The nucleoside released by the prodrug balapiravir (R1626), 4′-azido cytidine, was a highly selective inhibitor of mitochondrial RNA transcription. The nucleotide prodrug of 2′-C-methyl guanosine, BMS-986094, showed a primary effect on mitochondrial function at submicromolar concentrations, followed by general cytotoxicity. In contrast, NI containing multiple ribose modifications, including the active forms of mericitabine and sofosbuvir, were poor substrates for PolRMT and did not show mitochondrial toxicity in cells. In general, these studies identified the prostate cell line PC-3 as more than an order of magnitude more sensitive to mitochondrial toxicity than the commonly used HepG2 cells. In conclusion, analogous to the role of mitochondrial DNA polymerase gamma in toxicity caused by some 2′-deoxynucleotide analogs, there is an association between HCV NI that interact with PolRMT and the observation of adverse events. More broadly applied, the sensitive methods for detecting mitochondrial toxicity described here may help in the identification of mitochondrial toxicity prior to clinical testing.


Antimicrobial Agents and Chemotherapy | 2012

Metabolic activation of the anti-hepatitis C virus nucleotide prodrug PSI-352938.

Congrong Niu; Tatiana Tolstykh; Haiying Bao; Yeojin Park; Darius Babusis; Angela M. Lam; Shalini Bansal; Jinfa Du; Wonsuk Chang; P. Ganapati Reddy; Hai-Ren Zhang; Joseph Woolley; Li-Quan Wang; Piyun B. Chao; Adrian S. Ray; Michael J. Otto; Michael J. Sofia; Phillip A. Furman; Eisuke Murakami

ABSTRACT PSI-352938 is a novel cyclic phosphate prodrug of β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methylguanosine-5′-monophosphate with potent anti-HCV activity. In order to inhibit the NS5B RNA-dependent RNA polymerase, PSI-352938 must be metabolized to the active triphosphate form, PSI-352666. During in vitro incubations with PSI-352938, significantly larger amounts of PSI-352666 were formed in primary hepatocytes than in clone A hepatitis C virus (HCV) replicon cells. Metabolism and biochemical assays were performed to define the molecular mechanism of PSI-352938 activation. The first step, removal of the isopropyl group on the 3′,5′-cyclic phosphate moiety, was found to be cytochrome P450 (CYP) 3A4 dependent, with other CYP isoforms unable to catalyze the reaction. The second step, opening of the cyclic phosphate ring, was catalyzed by phosphodiesterases (PDEs) 2A1, 5A, 9A, and 11A4, all known to be expressed in the liver. The role of these enzymes in the activation of PSI-352938 was confirmed in primary human hepatocytes, where prodrug activation was reduced by inhibitors of CYP3A4 and PDEs. The third step, removal of the O6-ethyl group on the nucleobase, was shown to be catalyzed by adenosine deaminase-like protein 1. The resulting monophosphate was consecutively phosphorylated to the diphosphate and to the triphosphate PSI-352666 by guanylate kinase 1 and nucleoside diphosphate kinase, respectively. In addition, formation of nucleoside metabolites was observed in primary hepatocytes, and ecto-5′-nucleotidase was able to dephosphorylate the monophosphate metabolites. Since CYP3A4 is highly expressed in the liver, the CYP3A4-dependent metabolism of PSI-352938 makes it an effective liver-targeted prodrug, in part accounting for the potent antiviral activity observed clinically.


Antimicrobial Agents and Chemotherapy | 2011

Intracellular Nucleotide Levels during Coadministration of Tenofovir Disoproxil Fumarate and Didanosine in HIV-1-Infected Patients

Trevor Hawkins; Wenoah Veikley; Lucie Durand-Gasselin; Darius Babusis; Y. Sunila Reddy; John F. Flaherty; Adrian S. Ray

ABSTRACT Studies were conducted to determine if there is a mechanistic basis for reports of suboptimal virologic responses and concerns regarding the safety of regimens containing the combination of tenofovir (TFV) disoproxil fumarate (TDF) and didanosine (ddI) by assessing the pharmacokinetic consequences of coadministration of these drugs on intracellular nucleotides. This was a prospective and longitudinal study in HIV-1-infected patients of adding either TDF or ddI to a stable antiretroviral regimen containing the other drug. Intracellular concentrations of the nucleotide analogs TFV diphosphate (TFV-DP) and ddATP and the endogenous purine nucleotides dATP and 2′-dGTP in peripheral blood mononuclear cells were measured. A total of 16 patients were enrolled into the two study arms and a study extension. Intracellular TFV-DP concentrations (median, 120 fmol/106 cells) and ddATP concentrations (range, 1.50 to 7.54 fmol/106 cells in two patients) were unaffected following addition of ddI or TDF to a stable regimen containing the other drug. While coadministration of ddI and TDF for 4 weeks did not appear to impact dATP or dGTP concentrations, cross-sectional analysis suggested that extended therapy with ddI-containing regimens, irrespective of TDF coadministration, may decrease dATP and ddATP concentrations. Addition of TDF or ddI to a stable regimen including the other drug, in the context of ddI dose reduction, did not adversely affect the concentration of dATP, dGTP, TFV-DP, or ddATP. The association between longer-term ddI therapy and reduced intracellular nucleotide concentrations and this observations implication for the efficacy and toxicity of ddI-containing regimens deserve further study.


Antimicrobial Agents and Chemotherapy | 2014

Metabolism and Pharmacokinetics of the Anti-Hepatitis C Virus Nucleotide Prodrug GS-6620

Eisuke Murakami; Ting Wang; Darius Babusis; Eve-Irene Lepist; Dorothea Sauer; Yeojin Park; Jennifer E. Vela; Robert Shih; Gabriel Birkus; Dimitrios Stefanidis; Choung U. Kim; Aesop Cho; Adrian S. Ray

ABSTRACT The anti-hepatitis C virus nucleotide prodrug GS-6620 employs a double-prodrug approach, with l-alanine-isopropyl ester and phenol moieties attached to the 5′-phosphate that release the nucleoside monophosphate in hepatocytes and a 3′-isobutyryl ester added to improve permeability and oral bioavailability. Consistent with the stability found in intestinal homogenates, following oral administration, intact prodrug levels in blood plasma were the highest in dogs, followed by monkeys, and then were the lowest in hamsters. In contrast, liver levels of the triphosphate metabolite at the equivalent surface area-adjusted doses were highest in hamsters, followed by in dogs and monkeys. Studies in isolated primary hepatocytes suggest that relatively poor oral absorption in hamsters and monkeys was compensated for by relatively efficient hepatocyte activation. As intestinal absorption was found to be critical to the effectiveness of GS-6620 in nonclinical species, stomach pH, formulation, and food effect studies were completed in dogs. Consistent with in vitro absorption studies in Caco-2 cells, the absorption of GS-6620 was found to be complex and highly dependent on concentration. Higher rates of metabolism were observed at lower concentrations that were unable to saturate intestinal efflux transporters. In first-in-human clinical trials, the oral administration of GS-6620 resulted in poor plasma exposure relative to that observed in dogs and in large pharmacokinetic and pharmacodynamic variabilities. While a double-prodrug approach, including a 3′-isobutyryl ester, provided higher intrinsic intestinal permeability, this substitution appeared to be a metabolic liability, resulting in extensive intestinal metabolism and relatively poor oral absorption in humans.


The Journal of Infectious Diseases | 2016

Chemoprophylaxis With Oral Emtricitabine and Tenofovir Alafenamide Combination Protects Macaques From Rectal Simian/Human Immunodeficiency Virus Infection

Ivana Massud; James Mitchell; Darius Babusis; Frank Deyounks; Adrian S. Ray; James F. Rooney; Walid Heneine; Michael D. Miller; J. Gerardo García-Lerma

Tenofovir alafenamide (TAF) is a novel prodrug of tenofovir that efficiently delivers tenofovir diphosphate to lymphoid cells following oral administration. We investigated whether the combination of TAF and emtricitabine (FTC) could prevent simian/human immunodeficiency virus (SHIV) infection in macaques to determine the potential use of TAF for pre-exposure prophylaxis (PrEP) to prevent human immunodeficiency virus infection. Macaques were exposed rectally to SHIV once per week for up to 19 weeks and received saline or FTC/TAF 24 hours before and 2 hours after each virus inoculation. All 6 controls were infected, while the 6 PrEP-treated animals were protected from infection. Our results support the clinical investigation of FTC/TAF for PrEP.

Collaboration


Dive into the Darius Babusis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Birkus

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Tomas Cihlar

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge