Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hon C. Hui is active.

Publication


Featured researches published by Hon C. Hui.


Antimicrobial Agents and Chemotherapy | 2008

Design and Profiling of GS-9148, a Novel Nucleotide Analog Active against Nucleoside-Resistant Variants of Human Immunodeficiency Virus Type 1, and Its Orally Bioavailable Phosphonoamidate Prodrug, GS-9131

Tomas Cihlar; Adrian S. Ray; Constantine G. Boojamra; Lijun Zhang; Hon C. Hui; Genevieve Laflamme; Jennifer E. Vela; Deborah Grant; James K. Chen; Florence Myrick; Kirsten L. White; Ying Gao; Kuei Ying Lin; Janet L. Douglas; Neil T. Parkin; Anne Carey; Rowchanak Pakdaman; Richard L. Mackman

ABSTRACT GS-9148 [(5-(6-amino-purin-9-yl)-4-fluoro-2,5-dihydro-furan-2-yloxymethyl)phosphonic acid] is a novel ribose-modified human immunodeficiency virus type 1 (HIV-1) nucleotide reverse transcriptase (RT) inhibitor (NRTI) selected from a series of nucleoside phosphonate analogs for its favorable in vitro biological properties including (i) a low potential for mitochondrial toxicity, (ii) a minimal cytotoxicity in renal proximal tubule cells and other cell types, (iii) synergy in combination with other antiretrovirals, and (iv) a unique resistance profile against multiple NRTI-resistant HIV-1 strains. Notably, antiviral resistance analysis indicated that neither the K65R, L74V, or M184V RT mutation nor their combinations had any effect on the antiretroviral activity of GS-9148. Viruses carrying four or more thymidine analog mutations showed a substantially smaller change in GS-9148 activity relative to that observed with most marketed NRTIs. GS-9131, an ethylalaninyl phosphonoamidate prodrug designed to maximize the intracellular delivery of GS-9148, is a potent inhibitor of multiple subtypes of HIV-1 clinical isolates, with a mean 50% effective concentration of 37 nM. Inside cells, GS-9131 is readily hydrolyzed to GS-9148, which is further phosphorylated to its active diphosphate metabolite (A. S. Ray, J. E. Vela, C. G. Boojamra, L. Zhang, H. Hui, C. Callebaut, K. Stray, K.-Y. Lin, Y. Gao, R. L. Mackman, and T. Cihlar, Antimicrob. Agents Chemother. 52:648-654, 2008). GS-9148 diphosphate acts as a competitive inhibitor of RT with respect to dATP (Ki = 0.8 μM) and exhibits low inhibitory potency against host polymerases including DNA polymerase γ. Oral administration of GS-9131 to beagle dogs at a dose of 3 mg/kg of body weight resulted in high and persistent levels of GS-9148 diphosphate in peripheral blood mononuclear cells (with a maximum intracellular concentration of >9 μM and a half-life of >24 h). This favorable preclinical profile makes GS-9131 an attractive clinical development candidate for the treatment of patients infected with NRTI-resistant HIV.


Tetrahedron Letters | 1997

A general and efficient solid phase synthesis of quinazoline-2,4-diones

Mikhail F. Gordeev; Hon C. Hui; Eric M. Gordon; Dinesh V. Patel

Abstract An efficient solid phase synthesis of chiral quinazolinediones is described. Immobilized amino acid based urea derivatives 3 undergo a racemization-free heterocyclization upon gentle heating in presence of tetramethylguanidine to afford fused pyrimidine-2,4-diones 6 , which are smoothly N 1 -alkylated under mild conditions to produce immobilized quinazolinediones 8 . The method is amenable to combinatorial synthesis and offers broad scope for structural and chemical diversity, as illustrated by preparation of fused thieno[2,3-d]pyrimidine-2,4-dione 10 and hydroxamate pharmacophore bearing quinazolinedione derivative 11 .


Chemistry & Biology | 2001

Engineering inhibitors highly selective for the S1 sites of Ser190 trypsin-like serine protease drug targets

Bradley A. Katz; Paul A. Sprengeler; Christine Luong; Erik Verner; Kyle Elrod; Matt Kirtley; James W. Janc; Jeffrey R. Spencer; J. Guy Breitenbucher; Hon C. Hui; Danny McGee; Darin Allen; Arnold Martelli; Richard L. Mackman

BACKGROUND Involved or implicated in a wide spectrum of diseases, trypsin-like serine proteases comprise well studied drug targets and anti-targets that can be subdivided into two major classes. In one class there is a serine at position 190 at the S1 site, as in urokinase type plasminogen activator (urokinase or uPA) and factor VIIa, and in the other there is an alanine at 190, as in tissue type plasminogen activator (tPA) and factor Xa. A hydrogen bond unique to Ser190 protease-arylamidine complexes between O gamma(Ser190) and the inhibitor amidine confers an intrinsic preference for such inhibitors toward Ser190 proteases over Ala190 counterparts. RESULTS Based on the structural differences between the S1 sites of Ser190 and Ala190 protease-arylamidine complexes, we amplified the selectivity of amidine inhibitors toward uPA and against tPA, by factors as high as 220-fold, by incorporating a halo group ortho to the amidine of a lead inhibitor scaffold. Comparison of K(i) values of such halo-substituted and parent inhibitors toward a panel of Ser190 and Ala190 proteases demonstrates pronounced selectivity of the halo analogs for Ser190 proteases over Ala190 counterparts. Crystal structures of Ser190 proteases, uPA and trypsin, and of an Ala190 counterpart, thrombin, bound by a set of ortho (halo, amidino) aryl inhibitors and of non-halo parents reveal the structural basis of the exquisite selectivity and validate the design principle. CONCLUSIONS Remarkable selectivity enhancements of exceptionally small inhibitors are achieved toward the uPA target over the highly similar tPA anti-target through a single atom substitution on an otherwise relatively non-selective scaffold. Overall selectivities for uPA over tPA as high as 980-fold at physiological pH were realized. The increase in selectivity results from the displacement of a single bound water molecule common to the S1 site of both the uPA target and the tPA anti-target because of the ensuing deficit in hydrogen bonding of the arylamidine inhibitor when bound in the Ala190 protease anti-target.


Antimicrobial Agents and Chemotherapy | 2008

Intracellular Metabolism of the Nucleotide Prodrug GS-9131, a Potent Anti-Human Immunodeficiency Virus Agent

Adrian S. Ray; Jennifer E. Vela; Constantine G. Boojamra; Lijun Zhang; Hon C. Hui; Christian Callebaut; Kirsten M. Stray; Kuei-Ying Lin; Ying Gao; Richard L. Mackman; Tomas Cihlar

ABSTRACT GS-9131 is a phosphonoamidate prodrug of the novel ribose-modified phosphonate nucleotide analog GS-9148 that demonstrates potent anti-human immunodeficiency virus type 1 (HIV-1) activity and an excellent resistance profile in vitro. Prodrug moieties were optimized for the efficient delivery of GS-9148 and its active diphosphate (DP) metabolite to lymphoid cells following oral administration. To understand the intracellular pharmacology of GS-9131, incubations were performed with various types of lymphoid cells in vitro. The intracellular accumulation and antiviral activity levels of GS-9148 were limited by its lack of cellular permeation, and GS-9131 increased the delivery of GS-9148-DP by 76- to 290-fold relative to that of GS-9148. GS-9131 activation was saturable at high extracellular concentrations, potentially due to a high-affinity promoiety cleavage step. Once inside the cells, GS-9148 was efficiently phosphorylated, forming similar amounts of anabolites in primary lymphoid cells. The levels of GS-9148-DP formed in peripheral blood mononuclear cells infected with HIV-1 were similar to that in uninfected PBMCs, and approximately equivalent intracellular concentrations of GS-9148-DP and tenofovir (TVF)-DP were required to inhibit viral replication by 90%. Once it was formed, GS-9148-DP was efficiently retained in activated CD4+ cells, with a half-life of 19 h. In addition, GS-9131 showed a low potential for drug interactions with other adenine nucleoside/nucleotide reverse transcriptase inhibitors, based on the lack of competition for anabolism between suprapharmacologic concentrations of GS-9148 and TVF and the lack of activity of GS-9131 metabolites against purine nucleoside phosphorylase, an enzyme involved in the clearance of 2′,3′-dideoxyinosine. Together, these observations elucidate the cellular pharmacology of GS-9131 and illustrate its efficient loading of lymphoid cells, resulting in a prolonged intracellular exposure to the active metabolite GS-9148-DP.


Journal of Medicinal Chemistry | 2001

Exploiting subsite S1 of trypsin-like serine proteases for selectivity: potent and selective inhibitors of urokinase-type plasminogen activator.

Richard L. Mackman; Bradley A. Katz; J. Guy Breitenbucher; Hon C. Hui; Erik Verner; Christine Luong; Liang Liu; Paul A. Sprengeler

A nonselective inhibitor of trypsin-like serine proteases, 2-(2-hydroxybiphenyl-3-yl)-1H-indole-5-carboxamidine (1) (Verner, E.; Katz, B. A.; Spencer, J.; Allen, D.; Hataye, J.; Hruzewicz, W.; Hui, H. C.; Kolesnikov, A.; Li, Y.; Luong, C.; Martelli, A.; Radika. K.; Rai, R.; She, M.; Shrader, W.; Sprengeler, P. A.; Trapp, S.; Wang, J.; Young, W. B.; Mackman, R. L. J. Med. Chem. 2001, 44, 2753-2771) has been optimized through minor structural changes on the S1 binding group to afford remarkably selective and potent inhibitors of urokinase-type plasminogen activator (uPA). The trypsin-like serine proteases(1) that comprise drug targets can be broadly categorized into two subfamilies, those with Ser190 and those with Ala190. A single-atom modification, for example, replacement of hydrogen for chlorine at the 6-position of the 5-amidinoindole P1 group on 1, generated up to 6700-fold selectivity toward the Ser190 enzymes and against the Ala190 enzymes. The larger chlorine atom displaces a water molecule (H(2)O1(S1)) that binds near residue 190 in all the complexes of 1, and related inhibitors, in uPA, thrombin, and trypsin. The water molecule, H(2)O1(S1), in both the Ser190 or Ala190 enzymes, hydrogen bonds with the amidine N1 nitrogen of the inhibitor. When it is displaced, a reduction in affinity toward the Ala190 enzymes is observed due to the amidine N1 nitrogen of the bound inhibitor being deprived of a key hydrogen-bonding partner. In the Ser190 enzymes the affinity is maintained since the serine hydroxyl oxygen O gamma(Ser190) compensates for the displaced water molecule. High-resolution crystallography provided evidence for the displacement of the water molecule and validated the design rationale. In summation, a novel and powerful method for engineering selectivity toward Ser190 proteases and against Ala190 proteases without substantially increasing molecular weight is described.


Journal of Medicinal Chemistry | 2015

Discovery of an oral respiratory syncytial virus (RSV) fusion inhibitor (GS-5806) and clinical proof of concept in a human RSV challenge study.

Richard L. Mackman; Michael Sangi; David Sperandio; Jay P. Parrish; Eugene J. Eisenberg; Michel Perron; Hon C. Hui; Lijun Zhang; Dustin Siegel; Hai Yang; Oliver L. Saunders; Constantine G. Boojamra; Gary Lee; Dharmaraj Samuel; Kerim Babaoglu; Anne Carey; Brian E. Gilbert; Pedro A. Piedra; Robert G. Strickley; Quynh Iwata; Jaclyn Hayes; Kirsten M. Stray; April Kinkade; Dorothy Agnes Theodore; Robert Jordan; Manoj C. Desai; Tomas Cihlar

GS-5806 is a novel, orally bioavailable RSV fusion inhibitor discovered following a lead optimization campaign on a screening hit. The oral absorption properties were optimized by converting to the pyrazolo[1,5-a]-pyrimidine heterocycle, while potency, metabolic, and physicochemical properties were optimized by introducing the para-chloro and aminopyrrolidine groups. A mean EC50 = 0.43 nM was found toward a panel of 75 RSV A and B clinical isolates and dose-dependent antiviral efficacy in the cotton rat model of RSV infection. Oral bioavailability in preclinical species ranged from 46 to 100%, with evidence of efficient penetration into lung tissue. In healthy human volunteers experimentally infected with RSV, a potent antiviral effect was observed with a mean 4.2 log10 reduction in peak viral load and a significant reduction in disease severity compared to placebo. In conclusion, a potent, once daily, oral RSV fusion inhibitor with the potential to treat RSV infection in infants and adults is reported.


Journal of Medicinal Chemistry | 2013

Identification and Optimization of Pteridinone Toll-like Receptor 7 (TLR7) Agonists for the Oral Treatment of Viral Hepatitis

Paul A. Roethle; Ryan Mcfadden; Hong Yang; Paul Hrvatin; Hon C. Hui; Michael Graupe; Brian M. Gallagher; Jessica Jade Chao; Joseph Hesselgesser; Paul Duatschek; Jim Zheng; Daniel B. Tumas; Jason K. Perry; Randall L. Halcomb

Pteridinone-based Toll-like receptor 7 (TLR7) agonists were identified as potent and selective alternatives to the previously reported adenine-based agonists, leading to the discovery of GS-9620. Analogues were optimized for the immunomodulatory activity and selectivity versus other TLRs, based on differential induction of key cytokines including interferon α (IFN-α) and tumor necrosis factor α (TNF-α). In addition, physicochemical properties were adjusted to achieve desirable in vivo pharmacokinetic and pharmacodynamic properties. GS-9620 is currently in clinical evaluation for the treatment of chronic hepatitis B (HBV) infection.


Bioorganic & Medicinal Chemistry | 2010

Discovery of GS-9131: Design, synthesis and optimization of amidate prodrugs of the novel nucleoside phosphonate HIV reverse transcriptase (RT) inhibitor GS-9148.

Richard L. Mackman; Adrian S. Ray; Hon C. Hui; Lijun Zhang; Gabriel Birkus; Constantine G. Boojamra; Manoj C. Desai; Janet L. Douglas; Ying Gao; Deborah Grant; Genevieve Laflamme; Kuei Ying Lin; David Y. Markevitch; Ruchika Mishra; Martin McDermott; Rowchanak Pakdaman; Oleg V. Petrakovsky; Jennifer E. Vela; Tomas Cihlar

GS-9148 [(5-(6-amino-purin-9-yl)-4-fluoro-2,5-dihydro-furan-2-yloxymethyl)phosphonic acid] 4 is a novel nucleoside phosphonate HIV-1 reverse transcriptase (RT) inhibitor with a unique resistance profile toward N(t)RTI resistance mutations. To effectively deliver 4 and its active phosphorylated metabolite 15 into target cells, a series of amidate prodrugs were designed as substrates of cathepsin A, an intracellular lysosomal carboxypeptidase highly expressed in peripheral blood mononuclear cells (PBMCs). The ethylalaninyl phosphonamidate prodrug 5 (GS-9131) demonstrated favorable cathepsin A substrate properties, in addition to favorable in vitro intestinal and hepatic stabilities. Following oral dosing (3mg/kg) in Beagle dogs, high levels (>9.0microM) of active metabolite 15 were observed in PBMCs, validating the prodrug design process and leading to the nomination of 5 as a clinical candidate.


Journal of Molecular Biology | 2003

Elaborate manifold of short hydrogen bond arrays mediating binding of active site-directed serine protease inhibitors.

Bradley A. Katz; Kyle Elrod; Erik Verner; Richard L. Mackman; Christine Luong; William D. Shrader; Martin Sendzik; Jeffrey R. Spencer; Paul A. Sprengeler; Aleks Kolesnikov; Vincent W.-F. Tai; Hon C. Hui; J.Guy Breitenbucher; Darin Allen; James W. Janc

An extensive structural manifold of short hydrogen bond-mediated, active site-directed, serine protease inhibition motifs is revealed in a set of over 300 crystal structures involving a large suite of small molecule inhibitors (2-(2-phenol)-indoles and 2-(2-phenol)-benzimidazoles) determined over a wide range of pH (3.5-11.4). The active site hydrogen-bonding mode was found to vary markedly with pH, with the steric and electronic properties of the inhibitor, and with the type of protease (trypsin, thrombin or urokinase type plasminogen activator (uPA)). The pH dependence of the active site hydrogen-bonding motif is often intricate, constituting a distinct fingerprint of each complex. Isosteric replacements or minor substitutions within the inhibitor that modulate the pK(a) of the phenol hydroxyl involved in short hydrogen bonding, or that affect steric interactions distal to the active site, can significantly shift the pH-dependent structural profile characteristic of the parent scaffold, or produce active site-binding motifs unique to the bound analog. Ionization equilibria at the active site associated with inhibitor binding are probed in a series of the protease-inhibitor complexes through analysis of the pH dependence of the structure and environment of the active site-binding groups involved in short hydrogen bond arrays. Structures determined at high pH (>11), suggest that the pK(a) of His57 is dramatically elevated, to a value as high as approximately 11 in certain complexes. K(i) values involving uPA and trypsin determined as a function of pH for a set of inhibitors show pronounced parabolic pH dependence, the pH for optimal inhibition governed by the pK(a) of the inhibitor phenol involved in short hydrogen bonds. Comparison of structures of trypsin, thrombin and uPA, each bound by the same inhibitor, highlights important structural variations in the S1 and active sites accessible for engineering notable selectivity into remarkably small molecules with low nanomolar K(i) values.


Bioorganic & Medicinal Chemistry Letters | 2002

2-(2-Hydroxy-3-alkoxyphenyl)-1H-benzimidazole-5-carboxamidine derivatives as potent and selective urokinase-type plasminogen activator inhibitors.

Richard L. Mackman; Hon C. Hui; J.Guy Breitenbucher; Bradley A. Katz; Christine Luong; Arnold Martelli; Danny McGee; Kesavan Radika; Martin Sendzik; Jeffrey R. Spencer; Paul A. Sprengeler; James D. Tario; Erik Verner; Jing Wang

The development of potent and selective urokinase-type plasminogen activator (uPA) inhibitors based on the lead molecule 2-(2-hydroxy-3-ethoxyphenyl)-1H-benzimidazole-5-carboxamidine (3a) is described.

Collaboration


Dive into the Hon C. Hui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay P. Parrish

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tomas Cihlar

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge