Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darold E. Ward is active.

Publication


Featured researches published by Darold E. Ward.


Journal of Geophysical Research | 1998

Potential global fire monitoring from EOS‐MODIS

Yoram J. Kaufman; Christopher O. Justice; Luke P. Flynn; Jackie D. Kendall; Elaine M. Prins; Louis Giglio; Darold E. Ward; W. Paul Menzel; Alberto W. Setzer

The National Aeronautic and Space Administration (NASA) plans to launch the moderate resolution imaging spectroradiometer (MODIS) on the polarorbiting Earth Observation System (EOS) providing morning and evening global observations in 1999 and afternoon and night observations in 2000. These four MODIS daily fire observations will advance global fire monitoring with special 1 km resolution fire channels at 4 and 11 μm, with high saturation of about 450 and 400 K, respectively. MODIS data will also be used to monitor burn scars, vegetation type and condition, smoke aerosols, water vapor, and clouds for overall monitoring of the fire process and its effects on ecosystems, the atmosphere, and the climate. The MODIS fire science team is preparing algorithms that use the thermal signature to separate the fire signal from the background signal. A database of active fire products will be generated and archived at a 1 km resolution and summarized on a grid of 10 km and 0.5°, daily, 8 days, and monthly. It includes the fire occurrence and location, the rate of emission of thermal energy from the fire, and a rough estimate of the smoldering/flaming ratio. This information will be used in monitoring the spatial and temporal distribution of fires in different ecosystems, detecting changes in fire distribution and identifying new fire frontiers, wildfires, and changes in the frequency of the fires or their relative strength. We plan to combine the MODIS fire measurements with a detailed diurnal cycle of the fires from geostationary satellites. Sensitivity studies and analyses of aircraft and satellite data from the Yellowstone wildfire of 1988 and prescribed fires in the Smoke, Clouds, and Radiation (SCAR) aircraft field experiments are used to evaluate and validate the fire algorithms and to establish the relationship between the fire thermal properties, the rate of biomass consumption, and the emissions of aerosol and trace gases from fires.


Journal of Geophysical Research | 2003

Comprehensive laboratory measurements of biomass‐burning emissions: 1. Emissions from Indonesian, African, and other fuels

Ted J. Christian; B. Kleiss; Robert J. Yokelson; R. Holzinger; Paul J. Crutzen; Wei Min Hao; Bambang Hero Saharjo; Darold E. Ward

Trace gas and particle emissions were measured from 47 laboratory fires burning 16 regionally to globally significant fuel types. Instrumentation included the following: open-path Fourier transform infrared spectroscopy; proton transfer reaction mass spectrometry; filter sampling with subsequent analysis of particles with diameter <2.5 μm for organic and elemental carbon and other elements; and canister sampling with subsequent analysis by gas chromatography (GC)/flame ionization detector, GC/electron capture detector, and GC/mass spectrometry. The emissions of 26 compounds are reported by fuel type. The results include the first detailed measurements of the emissions from Indonesian fuels. Carbon dioxide, CO, CH 4 , NH 3 , HCN, methanol, and acetic acid were the seven most abundant emissions (in order) from burning Indonesian peat. Acetol (hydroxyacetone) was a major, previously unobserved emission from burning rice straw (21-34 g/kg). The emission factors for our simulated African fires are consistent with field data for African fires for compounds measured in both the laboratory and the field. However, the higher concentrations and more extensive instrumentation in this work allowed quantification of at least 10 species not previously quantified for African field fires (in order of abundance): acetaldehyde, phenol, acetol, glycolaldehyde, methylvinylether, furan, acetone, acetonitrile, propenenitrile, and propanenitrile. Most of these new compounds are oxygenated organic compounds, which further reinforces the importance of these reactive compounds as initial emissions from global biomass burning. A few high-combustion-efficiency fires emitted very high levels of elemental (black) carbon, suggesting that biomass burning may produce more elemental carbon than previously estimated.


Journal of Geophysical Research | 1997

Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy

Robert J. Yokelson; Ronald A. Susott; Darold E. Ward; James Reardon; David W. T. Griffith

Biomass samples from a diverse range of ecosystems were burned in the Intermountain Fire Sciences Laboratory open combustion facility. Midinfrared spectra of the nascent emissions were acquired at several heights above the fires with a Fourier transform infrared spectrometer (FTIR) coupled to an open multipass cell. In this report, the results from smoldering combustion during 24 fires are presented including production of carbon dioxide, carbon monoxide, methane, ethene, ethyne, propene, formaldehyde, 2-hydroxyethanal, methanol, phenol, acetic acid, formic acid, ammonia, hydrogen cyanide, and carbonyl sulfide. These were the dominant products observed, and many have significant influence on atmospheric chemistry at the local, regional, and global scale. Included in these results are the first optical, in situ measurements of smoke composition from fires in grasses, hardwoods, and organic soils. About one half of the detected organic emissions arose from fuel pyrolysis which produces white smoke rich in oxygenated organic compounds. These compounds deserve more attention in the assessment of fire impacts on the atmosphere. The compound 2-hydroxyethanal is a significant component of the smoke, and it is reported here for the first time as a product of fires. Most of the observed alkane and ammonia production accompanied visible glowing combustion. NH3 is normally the major nitrogen-containing emission detected from smoldering combustion of biomass, but from some smoldering organic soils, HCN was dominant. Tar condensed on cool surfaces below the fires accounting for ∼1% of the biomass burned, but it was enriched in N by a factor of 6–7 over the parent material, and its possible role in postfire nutrient cycling should be further investigated.


Journal of Geophysical Research | 1992

Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE‐B Experiment

Darold E. Ward; Ronald A. Susott; J. B. Kauffman; Ronald E. Babbitt; Dian L. Cummings; B. Dias; Brent N. Holben; Yoram J. Kaufman; R. A. Rasmussen; A. W. Setzer

Fires of the tropical forests and savannas are a major source of particulate matter and trace gases affecting the atmosphere globally. A paucity of quantitative information exists for these ecosystems with respect to fuel biomass, smoke emissions, and fire behavior conditions affecting the release of emissions. Five test fires were performed during August and September 1990 in the cerrado (savannalike region) in central Brazil (three fires) and tropical moist forest (two fires) in the eastern Amazon. This paper details the gases released, the ratios of the gases to each other and to particulate matter, fuel loads and the fraction consumed (combustion factors), and the fire behavior associated with biomass consumption. Models are presented for evaluating emission factors for CH4, CO2, CO, H2, and particles less than 2.5 μm diameter (PM2.5) as a function of combustion efficiency. The ratio of carbon released as CO2 (combustion efficiency) for the cerrado fires averaged 0.94 and for the deforestation fires it decreased from 0.88 for the flaming phase to <0.80 during the smoldering phase of combustion. For tropical ecosystems, emissions of most products of incomplete combustion are projected to be lower than previous estimates for savanna ecosystems and somewhat higher for fires used for deforestation purposes.


Oecologia | 1995

Fire in the Brazilian Amazon: 1. Biomass, nutrient pools, and losses in slashed primary forests

J. Boone Kauffman; Dian L. Cummings; Darold E. Ward; R. Babbitt

Deforestation in the Brazilian Amazon has resulted in the conversion of >230,000 km2 of tropical forest, yet little is known on the quantities of biomass consumed or the losses of nutrients from the ecosystem. We quantified the above-ground biomass, nutrient pools and the effects of biomass burning in four slashed primary tropical moist forests in the Brazilian Amazon. Total above-ground biomass (TAGB) ranged from 292 Mg ha-1 to 436 Mg ha-1. Coarse wood debris (>20.5 cm diameter) was the dominant fuel component. However, structure of the four sites were variable. Coarse wood debris comprised from 44% to 69% of the TAGB, while the forest floor (litter and rootmat) comprised from 3.7 to 8.0% of the TAGB. Total biomass consumption ranged from 42% to 57%. Fires resulted in the consumption of >99% of the litter and rootmat, yet <50% of the coarse wood debirs. Dramatic losses in C, N, and S were quantified. Lesser quantities of P, K, and Ca were lost by combustion processes. Carbon losses from the ecosystem were 58–112 Mg ha-1. Nitrogen losses ranged from 817 to 1605 kg ha-1 and S losses ranged from 92 to 122 kg ha-1. This represents losses that are as high as 56%, 68%, and 49% of the total above-ground pools of these nutrients, respectively. Losses of P were as high as 20 kg ha-1 or 32% of the above-ground pool. Losses to the atmosphere arising from primary slash fires were variable among sites due to site differences in concentration, fuel biomass, and fuel structure, climatic fluctuations, and anthropogenic influences. Compared to fires in other forest ecosystems, fires in slashed primary tropical evergreen forests result in among the highest total losses of nutrients ever measured. In addition, the proportion of the total nutrient pool lost from slash fires is higher in this ecosystem compared to other ecosystems due to a higher percentage of nutrients stored in above-ground biomass.


Journal of Geophysical Research | 1999

Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy

Robert J. Yokelson; Jon G. Goode; Darold E. Ward; Ronald A. Susott; Ronald E. Babbitt; Dale D. Wade; Issac T. Bertschi; David W. T. Griffith; Wei Min Hao

Biomass burning is an important source of many trace gases in the global troposphere. We have constructed an airborne trace gas measurement system consisting of a Fourier transform infrared spectrometer (FTIR) coupled to a “flow-through” multipass cell (AFTIR) and installed it on a U.S. Department of Agriculture Forest Service King Air B-90. The first measurements with the new system were conducted in North Carolina during April 1997 on large, isolated biomass fire plumes. Simultaneous measurements included Global Positioning System (GPS); airborne sonde; particle light scattering, CO, and CO2; and integrated filter and canister samples. AFTIR spectra acquired within a few kilometers of the fires yielded excess mixing ratios for 10 of the most common trace gases in the smoke: water, carbon dioxide, carbon monoxide, methane, formaldehyde, acetic acid, formic acid, methanol, ethylene, and ammonia. Emission ratios to carbon monoxide for formaldehyde, acetic acid, and methanol were each 2.5±1%. This is in excellent agreement with (and confirms the relevance of) our results from laboratory fires. However, these ratios are significantly higher than the emission ratios reported for these compounds in some previous studies of “fresh” smoke. We present a simple photochemical model calculation that suggests that oxygenated organic compounds should be included in the assessment of ozone formation in smoke plumes. Our measured emission factors indicate that biomass fires could account for a significant portion of the oxygenated organic compounds and HOx present in the tropical troposphere during the dry season. Our fire measurements, along with recent measurements of oxygenated biogenic emissions and oxygenated organic compounds in the free troposphere, indicate that these rarely measured compounds play a major, but poorly understood, role in the HOx, NOx, and O3 chemistry of the troposphere.


Journal of Geophysical Research | 1998

An overview of GOES‐8 diurnal fire and smoke results for SCAR‐B and 1995 fire season in South America

Elaine M. Prins; J. M. Feltz; W. Paul Menzel; Darold E. Ward

The launch of the eighth Geostationary Operational Environmental Satellite (GOES-8) in 1994 introduced an improved capability for diurnal fire and smoke monitoring throughout the western hemisphere. In South America the GOES-8 automated biomass burning algorithm (ABBA) and the automated smoke/aerosol detection algorithm (ASADA) are being used to monitor biomass burning. This paper outlines GOES-8 ABBA and ASADA development activities and summarizes results for the Smoke, Clouds, and Radiation in Brazil (SCAR-B) experiment and the 1995 fire season. GOES-8 ABBA results document the diurnal, spatial, and seasonal variability in fire activity throughout South America. A validation exercise compares GOES-8 ABBA results with ground truth measurements for two SCAR-B prescribed burns. GOES-8 ASADA aerosol coverage and derived albedo results provide an overview of the extent of daily and seasonal smoke coverage and relative intensities. Day-to-day variability in smoke extent closely tracks fluctuations in fire activity.


Environment International | 1991

Smoke emissions from wildland fires

Darold E. Ward; Colin C. Hardy

Biomass burning is a major source of emissions to the atmosphere. Some of these emissions may change global climate. This paper uses combustion efficiency as an independent variable for predicting emission factors for, among others, carbon monoxide, carbon dioxide, methane, and particulate matter. Other gases are correlated with the release of carbon monoxide. The release of nitrogen and sulfur-based compounds occurs in relation to their content in the biomass. The Sundance Fire is used to model the emissions from major fires that have occurred in the United States. Approximately 1 Tg of biomass was consumed by this fire, which released 0.019, 0.151, 1.545, and 0.007 Tg of particulate matter, carbon monoxide, carbon dioxide, and oxides of nitrogen, respectively. Other fires have released over 50 times this amount. Global emissions of various products of combustion are dependent on the combustion efficiency of the fires.


Journal of Geophysical Research | 1992

Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE‐A)

Yoram J. Kaufman; Alberto W. Setzer; Darold E. Ward; Didier Tanré; Brent N. Holben; P. Menzel; M. C. Pereira; R. A. Rasmussen

In the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A), conducted in September 1989, trace gas and particulate matter emissions were measured from biomass burning due to deforestation and grassland fires in South America. This information is required for a better understanding of the environmental impacts of biomass burning in the tropics and to improve algorithms for remote sensing of biomass burning from satellite platforms. The field experiment utilized the twin-engine Embraer Bandeirante EMB-1Ol instrumented aircraft of the Brazilian Institute for Space Research (INPE). Concentrations of ozone, CO2, CO, CH4, and particulate matter were measured from the aircraft. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured using sunphotometers in the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements were conducted of smoke optical characteristics for different smoke types. The collected data were analyzed for determining the emission ratios and combustion efficiency (the efficiency of a fire to convert the total burned carbon to carbon dioxide) and were compared with the results from fires in North America. Combustion efficiency was found to be higher in the tropics (97% for the cerrado and 90% for the deforestation fires) with emission factors similar to those of North American fires, for a given combustion efficiency. A strong relation was found between the spatial distribution of fires (up to 9000 per day in one state) and ozone concentration (up to 80 ppbv) and between biomass burning and concentrations of trace gases, particulate matter, and ozone. These relations strongly suggest a correlation between biomass burning in the tropics and ozone formation. An optical model of the smoke aerosol was derived and applied to radiance measurements. The smoke single scattering albedo was computed from the graphitic carbon concentration (assuming external mode mixture) as 0.90 ± 0.01. The particles effective radii were 0.1 to 0.2 μm, except for 1-day aged smoke with values up to 0.4 μm. Radiance measurements indicate that the width of the particle size distribution may be smaller in the tropics than for North American fires. The measured optical properties of smoke and the high correlation between emitted trace gases and particles form a basis for remote sensing of radiatively important trace gases and particulate matter from biomass burning using AVHRR imagery.


Journal of Geophysical Research | 2000

Measurements of excess O3, CO2, CO, CH4, C2H4, C2H2, HCN, NO, NH3, HCOOH, CH3COOH, HCHO, and CH3OH in 1997 Alaskan biomass burning plumes by airborne Fourier transform infrared spectroscopy (AFTIR).

Jon G. Goode; Robert J. Yokelson; Darold E. Ward; Ronald A. Susott; Ronald E. Babbitt; Mary Ann Davies; Wei Min Hao

We used an airborne Fourier transform infrared spectrometer (AFTIR), coupled to a flow-through, air-sampling cell, on a King Air B-90 to make in situ trace gas measurements in isolated smoke plumes from four, large, boreal zone wildfires in interior Alaska during June 1997. AFTIR spectra acquired near the source of the smoke plumes yielded excess mixing ratios for 13 of the most common trace gases: water, carbon dioxide, carbon monoxide, methane, nitric oxide, formaldehyde, acetic acid, formic acid, methanol, ethylene, acetylene, ammonia and hydrogen cyanide. Emission ratios to carbon monoxide for formaldehyde, acetic acid, and methanol were 2.2±0.4%, 1.3±0.4%, and 1.4±0.1%, respectively. For each oxygenated organic compound, a single linear equation fits our emission factors from Alaska, North Carolina, and laboratory fires as a function of modified combustion efficiency (MCE). A linear equation for predicting the NH3/NOx emission ratio as a function of MCE fits our Alaskan AFTIR results and those from many other studies. AFTIR spectra collected in downwind smoke that had aged 2.2±1 hours in the upper, early plume yielded ΔO3/ΔCO ratios of 7.9±2.4% resulting from O3 production rates of ∼50 ppbv h−1. The ΔNH3/ΔCO ratio in another plume decreased to 1/e of its initial value in ∼2.5 hours. A set of average emission ratios and emission factors for fires in Alaskan boreal forests is derived. We estimate that the 1997 Alaskan fires emitted 46±11 Tg of CO2.

Collaboration


Dive into the Darold E. Ward's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Min Hao

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Ronald A. Susott

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter V. Hobbs

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoram J. Kaufman

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Ronald E. Babbitt

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge