Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald A. Susott is active.

Publication


Featured researches published by Ronald A. Susott.


Journal of Geophysical Research | 1997

Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy

Robert J. Yokelson; Ronald A. Susott; Darold E. Ward; James Reardon; David W. T. Griffith

Biomass samples from a diverse range of ecosystems were burned in the Intermountain Fire Sciences Laboratory open combustion facility. Midinfrared spectra of the nascent emissions were acquired at several heights above the fires with a Fourier transform infrared spectrometer (FTIR) coupled to an open multipass cell. In this report, the results from smoldering combustion during 24 fires are presented including production of carbon dioxide, carbon monoxide, methane, ethene, ethyne, propene, formaldehyde, 2-hydroxyethanal, methanol, phenol, acetic acid, formic acid, ammonia, hydrogen cyanide, and carbonyl sulfide. These were the dominant products observed, and many have significant influence on atmospheric chemistry at the local, regional, and global scale. Included in these results are the first optical, in situ measurements of smoke composition from fires in grasses, hardwoods, and organic soils. About one half of the detected organic emissions arose from fuel pyrolysis which produces white smoke rich in oxygenated organic compounds. These compounds deserve more attention in the assessment of fire impacts on the atmosphere. The compound 2-hydroxyethanal is a significant component of the smoke, and it is reported here for the first time as a product of fires. Most of the observed alkane and ammonia production accompanied visible glowing combustion. NH3 is normally the major nitrogen-containing emission detected from smoldering combustion of biomass, but from some smoldering organic soils, HCN was dominant. Tar condensed on cool surfaces below the fires accounting for ∼1% of the biomass burned, but it was enriched in N by a factor of 6–7 over the parent material, and its possible role in postfire nutrient cycling should be further investigated.


Journal of Geophysical Research | 1992

Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE‐B Experiment

Darold E. Ward; Ronald A. Susott; J. B. Kauffman; Ronald E. Babbitt; Dian L. Cummings; B. Dias; Brent N. Holben; Yoram J. Kaufman; R. A. Rasmussen; A. W. Setzer

Fires of the tropical forests and savannas are a major source of particulate matter and trace gases affecting the atmosphere globally. A paucity of quantitative information exists for these ecosystems with respect to fuel biomass, smoke emissions, and fire behavior conditions affecting the release of emissions. Five test fires were performed during August and September 1990 in the cerrado (savannalike region) in central Brazil (three fires) and tropical moist forest (two fires) in the eastern Amazon. This paper details the gases released, the ratios of the gases to each other and to particulate matter, fuel loads and the fraction consumed (combustion factors), and the fire behavior associated with biomass consumption. Models are presented for evaluating emission factors for CH4, CO2, CO, H2, and particles less than 2.5 μm diameter (PM2.5) as a function of combustion efficiency. The ratio of carbon released as CO2 (combustion efficiency) for the cerrado fires averaged 0.94 and for the deforestation fires it decreased from 0.88 for the flaming phase to <0.80 during the smoldering phase of combustion. For tropical ecosystems, emissions of most products of incomplete combustion are projected to be lower than previous estimates for savanna ecosystems and somewhat higher for fires used for deforestation purposes.


Journal of Geophysical Research | 1999

Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy

Robert J. Yokelson; Jon G. Goode; Darold E. Ward; Ronald A. Susott; Ronald E. Babbitt; Dale D. Wade; Issac T. Bertschi; David W. T. Griffith; Wei Min Hao

Biomass burning is an important source of many trace gases in the global troposphere. We have constructed an airborne trace gas measurement system consisting of a Fourier transform infrared spectrometer (FTIR) coupled to a “flow-through” multipass cell (AFTIR) and installed it on a U.S. Department of Agriculture Forest Service King Air B-90. The first measurements with the new system were conducted in North Carolina during April 1997 on large, isolated biomass fire plumes. Simultaneous measurements included Global Positioning System (GPS); airborne sonde; particle light scattering, CO, and CO2; and integrated filter and canister samples. AFTIR spectra acquired within a few kilometers of the fires yielded excess mixing ratios for 10 of the most common trace gases in the smoke: water, carbon dioxide, carbon monoxide, methane, formaldehyde, acetic acid, formic acid, methanol, ethylene, and ammonia. Emission ratios to carbon monoxide for formaldehyde, acetic acid, and methanol were each 2.5±1%. This is in excellent agreement with (and confirms the relevance of) our results from laboratory fires. However, these ratios are significantly higher than the emission ratios reported for these compounds in some previous studies of “fresh” smoke. We present a simple photochemical model calculation that suggests that oxygenated organic compounds should be included in the assessment of ozone formation in smoke plumes. Our measured emission factors indicate that biomass fires could account for a significant portion of the oxygenated organic compounds and HOx present in the tropical troposphere during the dry season. Our fire measurements, along with recent measurements of oxygenated biogenic emissions and oxygenated organic compounds in the free troposphere, indicate that these rarely measured compounds play a major, but poorly understood, role in the HOx, NOx, and O3 chemistry of the troposphere.


Journal of Geophysical Research | 2000

Measurements of excess O3, CO2, CO, CH4, C2H4, C2H2, HCN, NO, NH3, HCOOH, CH3COOH, HCHO, and CH3OH in 1997 Alaskan biomass burning plumes by airborne Fourier transform infrared spectroscopy (AFTIR).

Jon G. Goode; Robert J. Yokelson; Darold E. Ward; Ronald A. Susott; Ronald E. Babbitt; Mary Ann Davies; Wei Min Hao

We used an airborne Fourier transform infrared spectrometer (AFTIR), coupled to a flow-through, air-sampling cell, on a King Air B-90 to make in situ trace gas measurements in isolated smoke plumes from four, large, boreal zone wildfires in interior Alaska during June 1997. AFTIR spectra acquired near the source of the smoke plumes yielded excess mixing ratios for 13 of the most common trace gases: water, carbon dioxide, carbon monoxide, methane, nitric oxide, formaldehyde, acetic acid, formic acid, methanol, ethylene, acetylene, ammonia and hydrogen cyanide. Emission ratios to carbon monoxide for formaldehyde, acetic acid, and methanol were 2.2±0.4%, 1.3±0.4%, and 1.4±0.1%, respectively. For each oxygenated organic compound, a single linear equation fits our emission factors from Alaska, North Carolina, and laboratory fires as a function of modified combustion efficiency (MCE). A linear equation for predicting the NH3/NOx emission ratio as a function of MCE fits our Alaskan AFTIR results and those from many other studies. AFTIR spectra collected in downwind smoke that had aged 2.2±1 hours in the upper, early plume yielded ΔO3/ΔCO ratios of 7.9±2.4% resulting from O3 production rates of ∼50 ppbv h−1. The ΔNH3/ΔCO ratio in another plume decreased to 1/e of its initial value in ∼2.5 hours. A set of average emission ratios and emission factors for fires in Alaskan boreal forests is derived. We estimate that the 1997 Alaskan fires emitted 46±11 Tg of CO2.


Journal of Geophysical Research | 1996

Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems

Darold E. Ward; W. M. Hao; Ronald A. Susott; Ronald E. Babbitt; R. W. Shea; J. B. Kauffman; Christopher O. Justice

Savanna burning in Africa occurs over a wide range of environmental, vegetation, and land use conditions. The emission factors for trace emissions from these fires can vary by a factor of 6 to 8, depending on whether the fires burn in miombo woodlands or in ecosystems where grass vegetation dominates. Ground-based measurements of smoke emissions and aboveground biomass were made for fires in grassland and woodland savanna ecosystems in South Africa and Zambia. A high combustion efficiency ( η⌢) was measured for the pure grassland; i.e., a high proportion of carbon was released as CO2. The η⌢ was lower for woodland savanna ecosystems with variable amounts of grass and with a more compact layer of leaf material and litter lying near the ground. The η⌢ was found to be dependent on the ratio of grass to the sum of grass and litter. Models developed for estimating emissions were integrated in a nomogram for estimating total emissions of CO2, CO, CH4, nonmethane hydrocarbons, and particles of less than 2.5 μm diameter per unit area.


Journal of Geophysical Research | 2003

Trace gas and particle emissions from fires in large diameter and belowground biomass fuels

Isaac T. Bertschi; Robert J. Yokelson; Darold E. Ward; Ron E. Babbitt; Ronald A. Susott; Jon G. Goode; Wei Min Hao

[1] We adopt a working definition of residual smoldering combustion (RSC) as biomass combustion that produces emissions that are not lofted by strong fire-induced convection. RSC emissions can be produced for up to several weeks after the passage of a flame front and they are mostly unaffected by flames. Fuels prone to RSC include downed logs, duff, and organic soils. Limited observations in the tropics and the boreal forest suggest that RSC is a globally significant source of emissions to the troposphere. This source was previously uncharacterized. We measured the first emission factors (EF) for RSC in a series of laboratory fires and in a wooded savanna in Zambia, Africa. We report EFRSC for both particles with diameter <2.5 mm (PM2.5) and the major trace gases as measured by open-path Fourier transform infrared (OP-FTIR) spectroscopy. The major trace gases include carbon dioxide, carbon monoxide, methane, ethane, ethene, acetylene, propene, formaldehyde, methanol, acetic acid, formic acid, glycolaldehyde, phenol, furan, ammonia, and hydrogen cyanide. We show that a model used to predict trace gas EF for fires in a wide variety of aboveground fine fuels fails to predict EF for RSC. For many compounds, our EF for RSC-prone fuels from the boreal forest and wooded savanna are very different from the EF for the same compounds measured in fire convection columns above these ecosystems. We couple our newly measured EFRSC with estimates of fuel consumption by RSC to refine emission estimates for fires in the boreal forest and wooded savanna. We find some large changes in estimates of biomass fire emissions with the inclusion of RSC. For instance, the wooded savanna methane EF increases by a factor of 2.5 even when RSC accounts for only 10% of fuel consumption. This shows that many more measurements of fuel consumption and EF for RSC are needed to improve estimates of biomass burning emissions. INDEX TERMS: 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305); 0368 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry; 0394 Atmospheric Composition and Structure: Instruments and techniques; 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; KEYWORDS: biomass burning, smoldering combustion, oxygenated organic compounds, ammonia, methanol, smoke Citation: Bertschi, I., R. J. Yokelson, D. E. Ward, R. E. Babbitt, R. A. Susott, J. G. Goode, and W. M. Hao, Trace gas and particle emissions from fires in large diameter and belowground biomass fuels, J. Geophys. Res., 108(D13), 8472, doi:10.1029/2002JD002100, 2003.


Journal of Geophysical Research | 1999

Seasonality of carbon emissions from biomass burning in a Zambian savanna

E. A. Hoffa; Darold E. Ward; W. M. Hao; Ronald A. Susott; R. H. Wakimoto

Seasonal trends in carbon emissions from savanna fires in Western Province, Zambia, were investigated in the early dry season (early June to early August) 1996. The objective was to determine the effect of fuel moisture content on combustion factors and modified combustion efficiency (the ratio of the molar concentration of CO2 released to the molar concentration of CO and CO2). Early dry season biomass burning may emit fewer emission products of complete combustion (CO2) and more products of incomplete combustion (e.g., CO). Thirteen experimental sites were burned between June and August 1996, six in a miombo woodland and seven in a dambo grassland. Fires were lit in each ecosystem as the fuels dried so as to monitor changes in fire behavior as the dry season progressed. Total fuel loading ranged from 1884 kg ha−1 to 3314 kg ha−1 in the dambo and 8953 kg ha−1 to 13233 kg ha−1 in the miombo. Moisture content of green grass decreased from 127% to 69% in the dambo and from 119% to 33% in the miombo through the length of the study. Combustion factors (CF, the percentage of fuel consumed) increased from 44% to 98% in the dambo. CF values for the miombo increased from 1% to 47%. Fire line intensity increased from 288 kW m−1 to 5271 kW m−1 in the dambo and from 25 kW m−1 to 5274 kW m−1 in the miombo. Results indicate that combustion factors and combustion efficiency values follow seasonal trends correlating to metrics of vegetation moisture content, which may alter the type and quantity of carbon emissions. Incorporation of seasonal dynamics of the fire regime should be included in global estimates of carbon flux in the subtropics and in the amount of products of incomplete combustion per unit area burned.


Journal of Geophysical Research | 2006

Emissions from the laboratory combustion of wildland fuels : Particle morphology and size

Rajan K. Chakrabarty; Hans Moosmüller; Mark A. Garro; W. Patrick Arnott; John K. Walker; Ronald A. Susott; Ronald E. Babbitt; Cyle Wold; Emily Lincoln; Wei Min Hao

[1] The morphology of particles emitted by wildland fires contributes to their physical and chemical properties but is rarely determined. As part of a study at the USFS Fire Sciences Laboratory (FSL) investigating properties of particulate matter emitted by fires, we studied the size, morphology, and microstructure of particles emitted from the combustion of eight different wildland fuels (i.e., sagebrush, poplar wood, ponderosa pine wood, ponderosa pine needles, white pine needles, tundra cores, and two grasses) by scanning electron microscopy. Six of these fuels were dry, while two fuels, namely the tundra cores and one of the grasses, had high fuel moisture content. The particle images were analyzed for their density and textural fractal dimensions, their monomer and agglomerate number size distributions, and three different shape descriptors, namely aspect ratio, root form factor, and roundness. The particles were also probed with energy dispersive X-ray spectroscopy confirming their carbonaceous nature. The density fractal dimension of the agglomerates was determined using two different techniques, one taking into account the three-dimensional nature of the particles, yielding values between 1.67 and 1.83, the other taking into account only the two-dimensional orientation, yielding values between 1.68 and 1.74. The textural fractal dimension that describes the roughness of the boundary of the two-dimensional projection of the particle was between 1.10 and 1.19. The maximum length of agglomerates was proportional to a power a of their diameter and the proportionality constant and the three shape descriptors were parameterized as function of the exponent a.


Journal of Geophysical Research | 1999

Trace gas emissions from laboratory biomass fires measured by open-path Fourier transform infrared spectroscopy : Fires in grass and surface fuels

Jon G. Goode; Robert J. Yokelson; Ronald A. Susott; Darold E. Ward

The trace gas emissions from six biomass fires, including three grass fires, were measured using a Fourier transform infrared (FTIR) spectrometer coupled to an open-path, multipass cell (OP-FTIR). The quantified emissions consisted of carbon dioxide, nitric oxide, water vapor, carbon monoxide, methane, ammonia, ethylene, acetylene, isobutene, methanol, acetic acid, formic acid, formaldehyde, and hydroxyacetaldehyde. By including grass fires in this study we have now measured smoke composition from fires in each major vegetation class. The emission ratios of the oxygenated compounds, formaldehyde, methanol, and acetic acid, were 1–2% of CO in the grass fires, similar to our other laboratory and field measurements but significantly higher than in some other studies. These oxygenated compounds are important, as they affect O3 and HOx chemistry in both biomass fire plumes and the free troposphere. The OP-FTIR data and the simultaneously collected canister data indicated that the dominant C4 emission was isobutene (C4H8) and not 1-butene. The rate constant for the reaction of isobutene with the OH radical is 60% larger than that of 1-butene. We estimate that 67±9% of the fuel nitrogen was volatilized with the major nitrogen emissions, ammonia, and nitric oxide, accounting for 22±8%.


International Journal of Remote Sensing | 2005

Comparison of aerosol optical thickness measurements by MODIS, AERONET sun photometers, and Forest Service handheld sun photometers in southern Africa during the SAFARI 2000 campaign

Wei Min Hao; Darold E. Ward; Ronald A. Susott; Ronald E. Babbitt; Bryce Nordgren; Yoram J. Kaufman; Brent N. Holben; David M. Giles

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the NASA Terra satellite has been used to monitor aerosol optical thickness (AOT, τ) daily at 10 km×10 km resolution worldwide since August 2000. This information, together with the locations of active fires detected by the MODIS instrument, is essential for understanding the seasonal trends and interannual variability of fires and their impacts on air pollution, atmospheric chemistry, and global climate. We compared aerosol optical thickness derived from MODIS, five automated sun photometers of the Aerosol Robotic Network (AERONET), and 38 Forest Service (FS) handheld sun photometers in western Zambia from 20 August to 20 September 2000. Aerosol optical thicknesses derived from AERONET sun photometers and FS sun photometers were also compared in the same region between mid‐June and late September 2000. Our objectives were to validate the AOT measurements by MODIS and to investigate the factors that affect AOT measurements. We demonstrated that in the regions of intense biomass burning, MODIS aerosol optical thickness was consistently 40–50% lower at 470, 550, and 660 nm compared with ground‐based AOT measurements by automated and handheld sun photometers and airborne measurements by NASA Ames Airborne Tracking 14‐channel Sunphotometers (AATS‐14). The satellite look angles can influence the MODIS AOT values, with the actual MODIS AOT values being as much as 0.06 higher than model‐calculated MODIS AOT values on the right edge of the MODIS scene. This phenomenon may be due to error in the assumed aerosol scattering phase function or surface directional properties. Density of vegetation cover can also affect MODIS measurements of aerosol optical thickness.

Collaboration


Dive into the Ronald A. Susott's collaboration.

Top Co-Authors

Avatar

Darold E. Ward

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Wei Min Hao

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald E. Babbitt

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily Lincoln

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyle Wold

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter V. Hobbs

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge