Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darrell Cockburn is active.

Publication


Featured researches published by Darrell Cockburn.


Journal of Molecular Biology | 2016

Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease.

Darrell Cockburn; Nicole M. Koropatkin

Carbohydrates comprise a large fraction of the typical diet, yet humans are only able to directly process some types of starch and simple sugars. The remainder transits the large intestine where it becomes food for the commensal bacterial community. This is an environment of not only intense competition but also impressive cooperation for available glycans, as these bacteria work to maximize their energy harvest from these carbohydrates during their limited transit time through the gut. The species within the gut microbiota use a variety of strategies to process and scavenge both dietary and host-produced glycans such as mucins. Some act as generalists that are able to degrade a wide range of polysaccharides, while others are specialists that are only able to target a few select glycans. All are members of a metabolic network where substantial cross-feeding takes place, as by-products of one organism serve as important resources for another. Much of this metabolic activity influences host physiology, as secondary metabolites and fermentation end products are absorbed either by the epithelial layer or by transit via the portal vein to the liver where they can have additional effects. These microbially derived compounds influence cell proliferation and apoptosis, modulate the immune response, and can alter host metabolism. This review summarizes the molecular underpinnings of these polysaccharide degradation processes, their impact on human health, and how we can manipulate them through the use of prebiotics.


Molecular Microbiology | 2015

Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale.

Darrell Cockburn; Nicole I. Orlovsky; Matthew H. Foley; Kurt J. Kwiatkowski; Constance M. Bahr; Mallory Maynard; Borries Demeler; Nicole M. Koropatkin

Eubacterium rectale is a prominent human gut symbiont yet little is known about the molecular strategies this bacterium has developed to acquire nutrients within the competitive gut ecosystem. Starch is one of the most abundant glycans in the human diet, and E. rectale increases in vivo when the host consumes a diet rich in resistant starch, although it is not a primary degrader of this glycan. Here we present the results of a quantitative proteomics study in which we identify two glycoside hydrolase 13 family enzymes, and three ABC transporter solute‐binding proteins that are abundant during growth on starch and, we hypothesize, work together at the cell surface to degrade starch and capture the released maltooligosaccharides. EUR_21100 is a multidomain cell wall anchored amylase that preferentially targets starch polysaccharides, liberating maltotetraose, whereas the membrane‐associated maltogenic amylase EUR_01860 breaks down maltooligosaccharides longer than maltotriose. The three solute‐binding proteins display a range of glycan‐binding specificities that ensure the capture of glucose through maltoheptaose and some α1,6‐branched glycans. Taken together, we describe a pathway for starch utilization by E. rectale DSM 17629 that may be conserved among other starch‐degrading Clostridium cluster XIVa organisms in the human gut.


International Journal of Biological Macromolecules | 2015

Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation

Darrell Cockburn; Morten Nielsen; Camilla Maymann Christiansen; Joakim Mark Andersen; Julie Bille Rannes; Andreas Blennow; Birte Svensson

Carbohydrate converting enzymes often possess extra substrate binding regions that enhance their activity. These can be found either on separate domains termed carbohydrate binding modules or as so-called surface binding sites (SBSs) situated on the catalytic domain. SBSs are common in starch degrading enzymes and critically important for their function. The affinity towards a variety of starch granules as well as soluble poly- and oligosaccharides of barley α-amylase 1 (AMY1) wild-type and mutants of two SBSs (SBS1 and SBS2) was investigated using Langmuir binding analysis, confocal laser scanning microscopy, affinity gel electrophoresis and surface plasmon resonance to unravel functional roles of the SBSs. SBS1 was critical for binding to different starch types as Kd increased by 7-62-fold or was not measurable upon mutation. By contrast SBS2 was particularly important for binding to soluble polysaccharides and oligosaccharides with α-1,6 linkages, suggesting that branch points are key structural elements in recognition by SBS2. Mutation at both SBS1 and SBS2 eliminated binding to all starch granule types tested. Taken together, the findings indicate that the two SBSs act in concert to localize AMY1 to the starch granule surface and that SBS2 works synergistically with the active site in the degradation of amylopectin.


Biologia | 2014

Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77 — a mini-review

Darrell Cockburn; Casper Wilkens; Christian Ruzanski; Susan Andersen; Jonas Willum Nielsen; Alison M. Smith; Robert A. Field; Martin Willemoës; Maher Abou Hachem; Birte Svensson

Surface binding sites (SBSs) interact with carbohydrates outside of the enzyme active site. They are frequently situated on catalytic domains and are distinct from carbohydrate binding modules (CBMs). SBSs are found in a variety of enzymes and often seen in crystal structures. Notably about half of the > 45 enzymes (in 17 GH and two GT families) with an identified SBS are from GH13 and a few from GH77, both belonging to clan GH-H of carbohydrate active enzymes. The many enzymes of GH13 with SBSs provide an opportunity to analyse their distribution within this very large and diverse family. SBS containing enzymes in GH13 are spread among 15 subfamilies (two were not assigned a subfamily). Comparison of these SBSs reveals a complex evolutionary history with evidence of conservation of key residues and/or structural location between some SBSs, while others are found at entirely distinct structural locations, suggesting convergent evolution. An array of investigations of the two SBSs in barley α-amylase demonstrated they play different functional roles in binding and degradation of polysaccharides. MalQ from Escherichia coli is an α-1,4-glucanotransferase of GH77, a family that is known to have at least one member that contains an SBS. Whereas MalQ is a single domain enzyme lacking CBMs, its plant orthologue DPE2 contains two N-terminal CBM20s. Surface plasmon resonance binding studies showed that MalQ and DPE2 have a similar affinity for β-cyclodextrin and that MalQ binds malto-oligosaccharides of >DP4 at a second site in competition with β-cyclodextrin yielding a stoichiometry >1. This suggests that MalQ may have an SBS, though its structural location remains unknown.


Cellular and Molecular Life Sciences | 2016

The Sus operon: a model system for starch uptake by the human gut Bacteroidetes

Matthew H. Foley; Darrell Cockburn; Nicole M. Koropatkin

Resident bacteria in the densely populated human intestinal tract must efficiently compete for carbohydrate nutrition. The Bacteroidetes, a dominant bacterial phylum in the mammalian gut, encode a plethora of discrete polysaccharide utilization loci (PULs) that are selectively activated to facilitate glycan capture at the cell surface. The most well-studied PUL-encoded glycan-uptake system is the starch utilization system (Sus) of Bacteroides thetaiotaomicron. The Sus includes the requisite proteins for binding and degrading starch at the surface of the cell preceding oligosaccharide transport across the outer membrane for further depolymerization to glucose in the periplasm. All mammalian gut Bacteroidetes possess analogous Sus-like systems that target numerous diverse glycans. In this review, we discuss what is known about the eight Sus proteins of B. thetaiotaomicron that define the Sus-like paradigm of nutrient acquisition that is exclusive to the Gram-negative Bacteroidetes. We emphasize the well-characterized outer membrane proteins SusDEF and the α-amylase SusG, each of which have unique structural features that allow them to interact with starch on the cell surface. Despite the apparent redundancy in starch-binding sites among these proteins, each has a distinct role during starch catabolism. Additionally, we consider what is known about how these proteins dynamically interact and cooperate in the membrane and propose a model for the formation of the Sus outer membrane complex.


Journal of Biological Chemistry | 2013

A bacterial glucanotransferase can replace the complex maltose metabolism required for starch to sucrose conversion in leaves at night

Christian Ruzanski; Julia B. Smirnova; Martin Rejzek; Darrell Cockburn; Henriette L. Pedersen; Marilyn J. Pike; William G. T. Willats; Birte Svensson; Martin Steup; Oliver Ebenhöh; Alison M. Smith; Robert A. Field

Background: Maltose metabolism during leaf starch degradation requires a multidomain glucanotransferase and a complex polysaccharide. Results: A conventional bacterial glucanotransferase rescues an Arabidopsis mutant lacking the multidomain glucanotransferase. Conclusion: Both the plant glucanotransferase-polysaccharide couple and the bacterial enzyme provide a glucosyl buffer in the starch degradation pathway. Significance: New light is shed on the regulation and evolution of maltose metabolism. Controlled conversion of leaf starch to sucrose at night is essential for the normal growth of Arabidopsis. The conversion involves the cytosolic metabolism of maltose to hexose phosphates via an unusual, multidomain protein with 4-glucanotransferase activity, DPE2, believed to transfer glucosyl moieties to a complex heteroglycan prior to their conversion to hexose phosphate via a cytosolic phosphorylase. The significance of this complex pathway is unclear; conversion of maltose to hexose phosphate in bacteria proceeds via a more typical 4-glucanotransferase that does not require a heteroglycan acceptor. It has recently been suggested that DPE2 generates a heterogeneous series of terminal glucan chains on the heteroglycan that acts as a “glucosyl buffer” to ensure a constant rate of sucrose synthesis in the leaf at night. Alternatively, DPE2 and/or the heteroglycan may have specific properties important for their function in the plant. To distinguish between these ideas, we compared the properties of DPE2 with those of the Escherichia coli glucanotransferase MalQ. We found that MalQ cannot use the plant heteroglycan as an acceptor for glucosyl transfer. However, experimental and modeling approaches suggested that it can potentially generate a glucosyl buffer between maltose and hexose phosphate because, unlike DPE2, it can generate polydisperse malto-oligosaccharides from maltose. Consistent with this suggestion, MalQ is capable of restoring an essentially wild-type phenotype when expressed in mutant Arabidopsis plants lacking DPE2. In light of these findings, we discuss the possible evolutionary origins of the complex DPE2-heteroglycan pathway.


Archive | 2013

Surface binding sites in carbohydrate active enzymes: an emerging picture of structural and functional diversity

Darrell Cockburn; Birte Svensson

Carbohydrate active enzymes, particularly those that are active on polysaccharides, are often found associated with carbohydrate binding modules (CBMs), which can play several roles in supporting enzyme function, such as localizing the enzyme to the substrate. However, the presence of CBMs is not universal and is in fact rare among some families of enzymes. In some cases an alternative to possessing a CBM is for the enzyme to bind to the substrate at a site on the catalytic domain, but away from the active site. Such a site is termed a surface (or secondary) binding site (SBS). SBSs have been identified in enzymes from a wide variety of families, though almost half are found in the α‐amylase family GH13. The roles attributed to SBSs are not limited to targeting the enzyme to the substrate, but also include a variety of others such as guiding the substrate into the active site, altering enzyme specificity and acting as an allosteric site. Although SBSs share many roles with CBMs they may not simply be an alternative to CBMs, but rather complementary as SBSs and CBMs frequently co‐occur in enzymes. Despite a relatively long history, it is only in recent years that SBSs have been studied in great detail as researchers have developed strategies for identifying and characterising these sites, using techniques that measure their binding properties as well as looking at the influence on enzymatic activity of altering these sites through mutagenesis. This growing interest may eventually lead to applications involving SBSs in industrial and biomedical settings as SBSs provide an interesting way to modulate enzymatic behavior without the need to alter the often highly sensitive active site of the enzyme.


PLOS ONE | 2016

Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

Darrell Cockburn; Casper Wilkens; Adiphol Dilokpimol; Hiroyuki Nakai; Anna Lewinska; Maher Abou Hachem; Birte Svensson

Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data.


Food Biophysics | 2012

Binding Interactions Between α-glucans from Lactobacillus reuteri and Milk Proteins Characterised by Surface Plasmon Resonance

Silja Kej Diemer; Birte Svensson; Linnéa Nygren Babol; Darrell Cockburn; Pieter Grijpstra; Lubbert Dijkhuizen; Ditte Marie Folkenberg; Christel Garrigues; Richard Ipsen

Interactions between milk proteins and α-glucans at pH 4.0–5.5 were investigated by use of surface plasmon resonance. The α-glucans were synthesised with glucansucrase enzymes from Lactobacillus reuteri strains ATCC-55730, 180, ML1 and 121. Variations in the molecular characteristics of the α-glucans, such as molecular weight, linkage type and degree of branching, influenced the interactions with native and denatured β-lactoglobulin and κ-casein. The highest overall binding levels were reached with α-(1,4) compared to α-(1,3) linked glucans. Glucans with many α-(1,6) linkages demonstrated the highest binding levels to κ-casein, whereas the interaction with native β-lactoglobulin was suppressed by α-(1,6) linkages. Glucans with a higher degree of branching generally displayed lower protein binding levels whereas a higher molecular weight resulted in increased binding to κ-casein. The interactions with κ-casein were not pH dependent, whereas binding to denatured β-lactoglobulin was highest at pH 4.0 and binding to native β-lactoglobulin was optimal at pH 4.5–5.0. This study shows that molecular weight, linkage type and degree of branching of α-glucans highly influence the binding interactions with milk proteins.


Molecular Microbiology | 2018

Novel carbohydrate binding modules in the surface anchored α-amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut

Darrell Cockburn; Carolyn Suh; Krizia Perez Medina; Rebecca M. Duvall; Zdzislaw Wawrzak; Bernard Henrissat; Nicole M. Koropatkin

Gut bacteria recognize accessible glycan substrates within a complex environment. Carbohydrate binding modules (CBMs) of cell surface glycoside hydrolases often drive binding to the target substrate. Eubacterium rectale, an important butyrate‐producing organism in the gut, consumes a limited range of substrates, including starch. Host consumption of resistant starch increases the abundance of E. rectale in the intestine, likely because it successfully captures the products of resistant starch degradation by other bacteria. Here, we demonstrate that the cell wall anchored starch‐degrading α‐amylase, Amy13K of E. rectale harbors five CBMs that all target starch with differing specificities. Intriguingly these CBMs efficiently bind to both regular and high amylose corn starch (a type of resistant starch), but have almost no affinity for potato starch (another type of resistant starch). Removal of these CBMs from Amy13K reduces the activity level of the enzyme toward corn starches by ∼40‐fold, down to the level of activity toward potato starch, suggesting that the CBMs facilitate activity on corn starch and allow its utilization in vivo. The specificity of the Amy13K CBMs provides a molecular rationale for why E. rectale is able to only use certain starch types without the aid of other organisms.

Collaboration


Dive into the Darrell Cockburn's collaboration.

Top Co-Authors

Avatar

Birte Svensson

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Casper Wilkens

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Maher Abou Hachem

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Nakai

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Joakim Mark Andersen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Bille Rannes

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Willemoës

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge