Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malene Bech Vester-Christensen is active.

Publication


Featured researches published by Malene Bech Vester-Christensen.


The EMBO Journal | 2013

Precision mapping of the human O‐GalNAc glycoproteome through SimpleCell technology

Catharina Steentoft; Sergey Y. Vakhrushev; Hiren J. Joshi; Yun Kong; Malene Bech Vester-Christensen; Katrine T-B G Schjoldager; Kirstine Lavrsen; Sally Dabelsteen; Nis Borbye Pedersen; Lara Marcos-Silva; Ramneek Gupta; Eric P. Bennett; Ulla Mandel; Søren Brunak; Hans H. Wandall; Steven B. Levery; Henrik Clausen

Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc‐type O‐glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc‐transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O‐glycosylation (SimpleCells) that enables proteome‐wide discovery of O‐glycan sites using ‘bottom‐up’ ETD‐based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O‐glycoproteome with almost 3000 glycosites in over 600 O‐glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O‐glycosylation. The finding of unique subsets of O‐glycoproteins in each cell line provides evidence that the O‐glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O‐glycoproteome should facilitate the exploration of how site‐specific O‐glycosylation regulates protein function.


Nature Methods | 2011

Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines

Catharina Steentoft; Sergey Y. Vakhrushev; Malene Bech Vester-Christensen; Katrine T-B G Schjoldager; Yun Kong; Eric P. Bennett; Ulla Mandel; Hans H. Wandall; Steven B. Levery; Henrik Clausen

Zinc-finger nuclease (ZFN) gene targeting is emerging as a versatile tool for engineering of multiallelic gene deficiencies. A longstanding obstacle for detailed analysis of glycoproteomes has been the extensive heterogeneities in glycan structures and attachment sites. Here we applied ZFN targeting to truncate the O-glycan elongation pathway in human cells, generating stable SimpleCell lines with homogenous O-glycosylation. Three SimpleCell lines expressing only truncated GalNAcα or NeuAcα2-6GalNAcα O-glycans were produced, allowing straightforward isolation and sequencing of GalNAc O-glycopeptides from total cell lysates using lectin chromatography and nanoflow liquid chromatography–mass spectrometry (nLC-MS/MS) with electron transfer dissociation fragmentation. We identified >100 O-glycoproteins with >350 O-glycan sites (the great majority previously unidentified), including a GalNAc O-glycan linkage to a tyrosine residue. The SimpleCell method should facilitate analyses of important functions of protein glycosylation. The strategy is also applicable to other O-glycoproteomes.


Journal of Biological Chemistry | 2010

O-glycosylation modulates proprotein convertase activation of angiopoietin-like protein 3: possible role of polypeptide GalNAc-transferase-2 in regulation of concentrations of plasma lipids.

Katrine T. Schjoldager; Malene Bech Vester-Christensen; Eric P. Bennett; Steven B. Levery; Tilo Schwientek; Wu Yin; Ola Blixt; Henrik Clausen

The angiopoietin-like protein 3 (ANGPTL3) is an important inhibitor of the endothelial and lipoprotein lipases and a promising drug target. ANGPTL3 undergoes proprotein convertase processing (RAPR224↓TT) for activation, and the processing site contains two potential GalNAc O-glycosylation sites immediately C-terminal (TT226). We developed an in vivo model system in CHO ldlD cells that was used to show that O-glycosylation in the processing site blocked processing of ANGPTL3. Genome-wide SNP association studies have identified the polypeptide GalNAc-transferase gene, GALNT2, as a candidate gene for low HDL and high triglyceride blood levels. We hypothesized that the GalNAc-T2 transferase performed critical O-glycosylation of proteins involved in lipid metabolism. Screening of a panel of proteins known to affect lipid metabolism for potential sites glycosylated by GalNAc-T2 led to identification of Thr226 adjacent to the proprotein convertase processing site in ANGPTL3. We demonstrated that GalNAc-T2 glycosylation of Thr226 in a peptide with the RAPR224↓TT processing site blocks in vitro furin cleavage. The study demonstrates that ANGPTL3 activation is modulated by O-glycosylation and that this step is probably controlled by GalNAc-T2.


Nature Biotechnology | 2015

Engineered CHO cells for production of diverse, homogeneous glycoproteins.

Zhang Yang; Shengjun Wang; Adnan Halim; Morten Alder Schulz; Morten Frödin; Shamim Herbert Rahman; Malene Bech Vester-Christensen; Carsten Behrens; Claus Kristensen; Sergey Y. Vakhrushev; Eric P. Bennett; Hans H. Wandall; Henrik Clausen

Production of glycoprotein therapeutics in Chinese hamster ovary (CHO) cells is limited by the cells generic capacity for N-glycosylation, and production of glycoproteins with desirable homogeneous glycoforms remains a challenge. We conducted a comprehensive knockout screen of glycosyltransferase genes controlling N-glycosylation in CHO cells and constructed a design matrix that facilitates the generation of desired glycosylation, such as human-like α2,6-linked sialic acid capping. This engineering approach will aid the production of glycoproteins with improved properties and therapeutic potential.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins

Malene Bech Vester-Christensen; Adnan Halim; Hiren J. Joshi; Catharina Steentoft; Eric P. Bennett; Steven B. Levery; Sergey Y. Vakhrushev; Henrik Clausen

Significance Protein O-mannosylation is believed to be an abundant modification of proteins, but only very few glycoproteins with O-mannose have been identified to date. Here, we present a unique strategy for proteome-wide discovery of O-mannosylated glycoproteins, and using this strategy we find that the important cadherin and plexin families of cell membrane receptors are O-mannosylated. The presented strategy invites the opportunity for wider exploration of the O-mannose glycoproteome and studies of the functions of O-mannose glycans. The metazoan O-mannose (O-Man) glycoproteome is largely unknown. It has been shown that up to 30% of brain O-glycans are of the O-Man type, but essentially only alpha-dystroglycan (α-DG) of the dystrophin–glycoprotein complex is well characterized as an O-Man glycoprotein. Defects in O-Man glycosylation underlie congenital muscular dystrophies and considerable efforts have been devoted to explore this O-glycoproteome without much success. Here, we used our SimpleCell strategy using nuclease-mediated gene editing of a human cell line (MDA-MB-231) to reduce the structural heterogeneity of O-Man glycans and to probe the O-Man glycoproteome. In this breast cancer cell line we found that O-Man glycosylation is primarily found on cadherins and plexins on β-strands in extracellular cadherin and Ig-like, plexin and transcription factor domains. The positions and evolutionary conservation of O-Man glycans in cadherins suggest that they play important functional roles for this large group of cell adhesion glycoproteins, which can now be addressed. The developed O-Man SimpleCell strategy is applicable to most types of cell lines and enables proteome-wide discovery of O-Man protein glycosylation.


Journal of Biological Chemistry | 2011

A systematic study of site-specific GalNAc-Type O-glycosylation modulating proprotein convertase processing

Katrine T. Schjoldager; Malene Bech Vester-Christensen; Christoffer K. Goth; Thomas Nordahl Petersen; Søren Brunak; Eric P. Bennett; Steven B. Levery; Henrik Clausen

Background: GalNAc-type O-glycosylation is emerging as a co-regulator of proprotein convertase processing of proteins. Results: O-Glycosylation within at least ±3 residues of the RXXR substrate motif for furin affected processing. Conclusion: Site-specific O-glycosylation by 20 polypeptide GalNAc transferases have wide co-regulatory functions in proprotein processing. Significance: This is the first systematic study that paves the way for wider co-regulatory functions of O-glycosylation in protein processing. Site-specific GalNAc-type O-glycosylation is emerging as an important co-regulator of proprotein convertase (PC) processing of proteins. PC processing is crucial in regulating many fundamental biological pathways and O-glycans in or immediately adjacent to processing sites may affect recognition and function of PCs. Thus, we previously demonstrated that deficiency in site-specific O-glycosylation in a PC site of the fibroblast growth factor, FGF23, resulted in marked reduction in secretion of active unprocessed FGF23, which cause familial tumoral calcinosis and hyperostosis hyperphosphatemia. GalNAc-type O-glycosylation is found on serine and threonine amino acids and up to 20 distinct polypeptide GalNAc transferases catalyze the first addition of GalNAc to proteins making this step the most complex and differentially regulated steps in protein glycosylation. There is no reliable prediction model for O-glycosylation especially of isolated sites, but serine and to a lesser extent threonine residues are frequently found adjacent to PC processing sites. In the present study we used in vitro enzyme assays and ex vivo cell models to systematically address the boundaries of the region within site-specific O-glycosylation affect PC processing. The results demonstrate that O-glycans within at least ±3 residues of the RXXR furin cleavage site may affect PC processing suggesting that site-specific O-glycosylation is a major co-regulator of PC processing.


Molecular & Cellular Proteomics | 2013

Enhanced Mass Spectrometric Mapping of the Human GalNAc-type O-Glycoproteome with SimpleCells

Sergey Y. Vakhrushev; Catharina Steentoft; Malene Bech Vester-Christensen; Eric P. Bennett; Henrik Clausen; Steven B. Levery

Characterizing protein GalNAc-type O-glycosylation has long been a major challenge, and as a result, our understanding of this glycoproteome is particularly poor. Recently, we presented a novel strategy for high throughput identification of O-GalNAc glycosites using zinc finger nuclease gene-engineered “SimpleCell” lines producing homogeneous truncated O-glycosylation. Total lysates of cells were trypsinized and subjected to lectin affinity chromatography enrichment, followed by identification of GalNAc O-glycopeptides by nLC-MS/MS, with electron transfer dissociation employed to specify sites of O-glycosylation. Here, we demonstrate a substantial improvement in the SimpleCell strategy by including an additional stage of lectin affinity chromatography on secreted glycoproteins from culture media (secretome) and by incorporating pre-fractionation of affinity-enriched glycopeptides via IEF before nLC-MS/MS. We applied these improvements to three human SimpleCells studied previously, and each yielded a substantial increase in the number of O-glycoproteins and O-glycosites identified. We found that analysis of the secretome was an important independent factor for increasing identifications, suggesting that further substantial improvements can also be sought through analysis of subcellular organelle fractions. In addition, we uncovered a substantial nonoverlapping set of O-glycoproteins and O-glycosites using an alternative protease digestion (chymotrypsin). In total, the improvements led to identification of 259 glycoproteins, of which 152 (59%) were novel compared with our previous strategy using the same three cell lines. With respect to individual glycosites, we identified a total of 856 sites, of which 508 (59%) were novel compared with our previous strategy; this includes four new identifications of O-GalNAc attached to tyrosine. Furthermore, we uncovered ∼220 O-glycosites wherein the peptides were clearly identified, but the glycosites could not be unambiguously assigned to specific positions. The improved strategy should greatly facilitate high throughput characterization of the human GalNAc-type O-glycoproteome as well as be applicable to analysis of other O-glycoproteomes.


Journal of Biological Chemistry | 2013

Site-specific O-Glycosylation on the MUC2 Mucin Protein Inhibits Cleavage by the Porphyromonas gingivalis Secreted Cysteine Protease (RgpB)

Sjoerd van der Post; Durai B. Subramani; Malin Bäckström; Malin E. V. Johansson; Malene Bech Vester-Christensen; Ulla Mandel; Eric P. Bennett; Henrik Clausen; Gunnar Dahlén; Aneta Sroka; Jan Potempa; Gunnar C. Hansson

Background: MUC2 polymers form the mucus layer of colon that separates luminal bacteria from the epithelium. Results: P. gingivalis secrets a protease that cleaves the MUC2 mucin, a cleavage modulated by O-glycosylation. Conclusion: Bacteria can disrupt the MUC2 polymer via proteolytic cleavage. However, O-glycosylation can inhibit this process. Significance: Bacteria can dissolve the protective inner mucus layer, potentially triggering colitis. The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether there are bacteria that can secrete similar proteases. We screened bacterial culture supernatants for such activity using recombinant fragments of the MUC2 mucin, the major structural component, and the only gel-forming mucin in the colonic mucus. MUC2 has two central heavily O-glycosylated mucin domains that are protease-resistant and has cysteine-rich N and C termini responsible for polymerization. Culture supernatants of Porphyromonas gingivalis, a bacterium that secretes proteases responsible for periodontitis, cleaved the MUC2 C-terminal region, whereas the N-terminal region was unaffected. The active enzyme was isolated and identified as Arg-gingipain B (RgpB). Two cleavage sites were localized to IR↓TT and NR↓QA. IR↓TT cleavage will disrupt the MUC2 polymers. Because this site has two potential O-glycosylation sites, we tested whether recombinant GalNAc-transferases (GalNAc-Ts) could glycosylate a synthetic peptide covering the IRTT sequence. Only GalNAc-T3 was able to glycosylate the second Thr in IRTT, rendering the sequence resistant to cleavage by RgpB. Furthermore, when GalNAc-T3 was expressed in CHO cells expressing the MUC2 C terminus, the second threonine was glycosylated, and the protein became resistant to RgpB cleavage. These findings suggest that bacteria can produce proteases capable of dissolving the inner protective mucus layer by specific cleavages in the MUC2 mucin and that this cleavage can be modulated by site-specific O-glycosylation.


Nucleic Acids Research | 2015

Fast and sensitive detection of indels induced by precise gene targeting

Zhang Yang; Catharina Steentoft; Camilla Hauge; Lars Kai Hansen; Allan Lind Thomsen; Francesco Niola; Malene Bech Vester-Christensen; Morten Frödin; Henrik Clausen; Hans H. Wandall; Eric P. Bennett

The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect by traditional methods. Here we present a method for fast, sensitive and simple indel detection that accurately defines indel sizes down to ±1 bp. The method coined IDAA for Indel Detection by Amplicon Analysis is based on tri-primer amplicon labelling and DNA capillary electrophoresis detection, and IDAA is amenable for high throughput analysis.


Journal of Biological Chemistry | 2013

The Lectin Domain of the Polypeptide GalNAc Transferase Family of Glycosyltransferases (ppGalNAc Ts) Acts as a Switch Directing Glycopeptide Substrate Glycosylation in an N- or C-terminal Direction, Further Controlling Mucin Type O-Glycosylation

Thomas A. Gerken; Leslie Revoredo; Joseph J. C. Thome; Lawrence A. Tabak; Malene Bech Vester-Christensen; Henrik Clausen; Gagandeep Gahlay; Donald L. Jarvis; Roy W. Johnson; Heather A. Moniz; Kelley W. Moremen

Background: ppGalNAc transferases, which initiate O-glycosylation, possess a poorly understood lectin domain. Results: The lectin domain directs glycosylation in an N- or C- terminal direction in an isoform-specific manner. Conclusion: Unanticipated isoform-specific directionality was revealed for modification of glycopeptide substrates. Significance: A novel mechanism of controlling of mucin type O-glycosylation has been discovered based on tethered lectin domains specifying N- or C-terminal modification of glycopeptide substrates. Mucin type O-glycosylation is initiated by a large family of polypeptide GalNAc transferases (ppGalNAc Ts) that add α-GalNAc to the Ser and Thr residues of peptides. Of the 20 human isoforms, all but one are composed of two globular domains linked by a short flexible linker: a catalytic domain and a ricin-like lectin carbohydrate binding domain. Presently, the roles of the catalytic and lectin domains in peptide and glycopeptide recognition and specificity remain unclear. To systematically study the role of the lectin domain in ppGalNAc T glycopeptide substrate utilization, we have developed a series of novel random glycopeptide substrates containing a single GalNAc-O-Thr residue placed near either the N or C terminus of the glycopeptide substrate. Our results reveal that the presence and N- or C-terminal placement of the GalNAc-O-Thr can be important determinants of overall catalytic activity and specificity that differ between transferase isoforms. For example, ppGalNAc T1, T2, and T14 prefer C-terminally placed GalNAc-O-Thr, whereas ppGalNAc T3 and T6 prefer N-terminally placed GalNAc-O-Thr. Several transferase isoforms, ppGalNAc T5, T13, and T16, display equally enhanced N- or C-terminal activities relative to the nonglycosylated control peptides. This N- and/or C-terminal selectivity is presumably due to weak glycopeptide binding to the lectin domain, whose orientation relative to the catalytic domain is dynamic and isoform-dependent. Such N- or C-terminal glycopeptide selectivity provides an additional level of control or fidelity for the O-glycosylation of biologically significant sites and suggests that O-glycosylation may in some instances be exquisitely controlled.

Collaboration


Dive into the Malene Bech Vester-Christensen's collaboration.

Top Co-Authors

Avatar

Henrik Clausen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Birte Svensson

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maher Abou Hachem

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johanne Mørch Jensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulla Mandel

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge