Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darren A. Cusanovich is active.

Publication


Featured researches published by Darren A. Cusanovich.


Science | 2015

Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing

Darren A. Cusanovich; Riza Daza; Andrew Adey; Hannah A. Pliner; Lena Christiansen; Kevin L. Gunderson; Cole Trapnell; Jay Shendure

Chromatin state and the single cell Identifying the chromatin state of any single cell, which may or may not have a different function or represent different stages relative to others collected within any single culture, experiment, or tissue, has been challenging. Cusanovitch et al. skirted previously identified technological limitations to identify regions of accessible chromatin at single-cell resolution. Combinatorial cellular indexing, a strategy for multiplex barcoding of thousands of single cells per experiment, was successfully used to investigate the genome-wide chromatin accessibility landscape in each of over 15,000 single cells. Science, this issue p. 910 Combinatorial indexing can identify chromatin states at single-cell resolution. Technical advances have enabled the collection of genome and transcriptome data sets with single-cell resolution. However, single-cell characterization of the epigenome has remained challenging. Furthermore, because cells must be physically separated before biochemical processing, conventional single-cell preparatory methods scale linearly. We applied combinatorial cellular indexing to measure chromatin accessibility in thousands of single cells per assay, circumventing the need for compartmentalization of individual cells. We report chromatin accessibility profiles from more than 15,000 single cells and use these data to cluster cells on the basis of chromatin accessibility landscapes. We identify modules of coordinately regulated chromatin accessibility at the level of single cells both between and within cell types, with a scalable method that may accelerate progress toward a human cell atlas.


PLOS Genetics | 2014

The functional consequences of variation in transcription factor binding.

Darren A. Cusanovich; Bryan J Pavlovic; Jonathan K. Pritchard; Yoav Gilad

One goal of human genetics is to understand how the information for precise and dynamic gene expression programs is encoded in the genome. The interactions of transcription factors (TFs) with DNA regulatory elements clearly play an important role in determining gene expression outputs, yet the regulatory logic underlying functional transcription factor binding is poorly understood. Many studies have focused on characterizing the genomic locations of TF binding, yet it is unclear to what extent TF binding at any specific locus has functional consequences with respect to gene expression output. To evaluate the context of functional TF binding we knocked down 59 TFs and chromatin modifiers in one HapMap lymphoblastoid cell line. We then identified genes whose expression was affected by the knockdowns. We intersected the gene expression data with transcription factor binding data (based on ChIP-seq and DNase-seq) within 10 kb of the transcription start sites of expressed genes. This combination of data allowed us to infer functional TF binding. Using this approach, we found that only a small subset of genes bound by a factor were differentially expressed following the knockdown of that factor, suggesting that most interactions between TF and chromatin do not result in measurable changes in gene expression levels of putative target genes. We found that functional TF binding is enriched in regulatory elements that harbor a large number of TF binding sites, at sites with predicted higher binding affinity, and at sites that are enriched in genomic regions annotated as “active enhancers.”


Human Molecular Genetics | 2011

The effects of EBV transformation on gene expression levels and methylation profiles

Minal Çalışkan; Darren A. Cusanovich; Carole Ober; Yoav Gilad

Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines (LCLs) provide a conveniently accessible and renewable resource for functional genomic studies in humans. The ability to accumulate multidimensional data pertaining to the same individual cell lines, from complete genomic sequences to detailed gene regulatory profiles, further enhances the utility of LCLs as a model system. A lingering concern, however, is that the changes associated with EBV transformation of B cells reduce the usefulness of LCLs as a surrogate model for primary tissues. To evaluate the validity of this concern, we compared global gene expression and methylation profiles between CD20+ primary B cells sampled from six individuals and six independent replicates of transformed LCLs derived from each sample. These data allowed us to obtain a detailed catalog of the genes and pathways whose regulation is affected by EBV transformation. We found that the expression levels and promoter methylation profiles of more than half of the studied genes were affected by the EBV transformation, including enrichments of genes involved in transcription regulation, cell cycle and immune response. However, we show that most of the differences in gene expression levels between LCLs and B cells are of small magnitude, and that LCLs can often recapitulate the naturally occurring gene expression variation in primary B cells. Thus, our observations suggest that inference of the genetic architecture that underlies regulatory variation in LCLs can typically be generalized to primary B cells. In contrast, inference based on functional studies in LCLs may be more limited to the cell lines.


Science | 2017

Comprehensive single-cell transcriptional profiling of a multicellular organism

Junyue Cao; Jonathan S. Packer; Vijay Ramani; Darren A. Cusanovich; Chau Huynh; Riza Daza; Xiaojie Qiu; Choli Lee; Scott N. Furlan; Andrew Adey; Robert H. Waterston; Cole Trapnell; Jay Shendure

Sequencing each cell of the nematode Single-cell sequencing is challenging owing to the limited biological material available in an individual cell and the high cost of sequencing across multiple cells. Cao et al. developed a two-step combinatorial barcoding method to profile both single-cell and single-nucleus transcriptomes without requiring physical isolation of each cell. The authors profiled almost 50,000 single cells from an individual Caenorhabditis elegans larval stage and were able to identify and recover information from different, even rare, cell types. Science, this issue p. 661 Single-cell combinatorial indexing RNA sequencing achieves more than 50-fold cellular coverage of a developing nematode worm. To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold “shotgun” cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type–specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms.


PLOS ONE | 2015

Genome-Wide Association Studies of the Human Gut Microbiota

Emily R. Davenport; Darren A. Cusanovich; Katelyn Michelini; Luis B. Barreiro; Carole Ober; Yoav Gilad

The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both). These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%). For example, we identified an association between a taxon known to affect obesity (genus Akkermansia) and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL) mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10−7). Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.


Human Molecular Genetics | 2012

The combination of a genome-wide association study of lymphocyte count and analysis of gene expression data reveals novel asthma candidate genes

Darren A. Cusanovich; Christine Billstrand; Xiang Zhou; Claudia Chavarria; Sherryl De Leon; Katelyn Michelini; Athma A. Pai; Carole Ober; Yoav Gilad

Recent genome-wide association studies (GWAS) have identified a number of novel genetic associations with complex human diseases. In spite of these successes, results from GWAS generally explain only a small proportion of disease heritability, an observation termed the ‘missing heritability problem’. Several sources for the missing heritability have been proposed, including the contribution of many common variants with small individual effect sizes, which cannot be reliably found using the standard GWAS approach. The goal of our study was to explore a complimentary approach, which combines GWAS results with functional data in order to identify novel genetic associations with small effect sizes. To do so, we conducted a GWAS for lymphocyte count, a physiologic quantitative trait associated with asthma, in 462 Hutterites. In parallel, we performed a genome-wide gene expression study in lymphoblastoid cell lines from 96 Hutterites. We found significant support for genetic associations using the GWAS data when we considered variants near the 193 genes whose expression levels across individuals were most correlated with lymphocyte counts. Interestingly, these variants are also enriched with signatures of an association with asthma susceptibility, an observation we were able to replicate. The associated loci include genes previously implicated in asthma susceptibility as well as novel candidate genes enriched for functions related to T cell receptor signaling and adenosine triphosphate synthesis. Our results, therefore, establish a new set of asthma susceptibility candidate genes. More generally, our observations support the notion that many loci of small effects influence variation in lymphocyte count and asthma susceptibility.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Regulatory element copy number differences shape primate expression profiles

Rebecca C. Iskow; Omer Gokcumen; Alexej Abyzov; Joanna Malukiewicz; Qihui Zhu; Ann T. Sukumar; Athma A. Pai; Ryan E. Mills; Lukas Habegger; Darren A. Cusanovich; Meagan A. Rubel; George H. Perry; Mark Gerstein; Anne C. Stone; Yoav Gilad; Charles Lee

Gene expression differences are shaped by selective pressures and contribute to phenotypic differences between species. We identified 964 copy number differences (CNDs) of conserved sequences across three primate species and examined their potential effects on gene expression profiles. Samples with copy number different genes had significantly different expression than samples with neutral copy number. Genes encoding regulatory molecules differed in copy number and were associated with significant expression differences. Additionally, we identified 127 CNDs that were processed pseudogenes and some of which were expressed. Furthermore, there were copy number-different regulatory regions such as ultraconserved elements and long intergenic noncoding RNAs with the potential to affect expression. We postulate that CNDs of these conserved sequences fine-tune developmental pathways by altering the levels of RNA.


Nature Protocols | 2016

Mapping 3D genome architecture through in situ DNase Hi-C

Vijay Ramani; Darren A. Cusanovich; Ronald J. Hause; Wenxiu Ma; Ruolan Qiu; Xinxian Deng; C. Anthony Blau; Christine M. Disteche; William Stafford Noble; Jay Shendure; Zhijun Duan

With the advent of massively parallel sequencing, considerable work has gone into adapting chromosome conformation capture (3C) techniques to study chromosomal architecture at a genome-wide scale. We recently demonstrated that the inactive murine X chromosome adopts a bipartite structure using a novel 3C protocol, termed in situ DNase Hi-C. Like traditional Hi-C protocols, in situ DNase Hi-C requires that chromatin be chemically cross-linked, digested, end-repaired, and proximity-ligated with a biotinylated bridge adaptor. The resulting ligation products are optionally sheared, affinity-purified via streptavidin bead immobilization, and subjected to traditional next-generation library preparation for Illumina paired-end sequencing. Importantly, in situ DNase Hi-C obviates the dependence on a restriction enzyme to digest chromatin, instead relying on the endonuclease DNase I. Libraries generated by in situ DNase Hi-C have a higher effective resolution than traditional Hi-C libraries, which makes them valuable in cases in which high sequencing depth is allowed for, or when hybrid capture technologies are expected to be used. The protocol described here, which involves ∼4 d of bench work, is optimized for the study of mammalian cells, but it can be broadly applicable to any cell or tissue of interest, given experimental parameter optimization.


Nature | 2018

The cis -regulatory dynamics of embryonic development at single-cell resolution

Darren A. Cusanovich; James P. Reddington; David A. Garfield; Riza Daza; Delasa Aghamirzaie; Raquel Marco-Ferreres; Hannah A. Pliner; Lena Christiansen; Xiaojie Qiu; Cole Trapnell; Jay Shendure; Eileen E. M. Furlong

Understanding how gene regulatory networks control the progressive restriction of cell fates is a long-standing challenge. Recent advances in measuring gene expression in single cells are providing new insights into lineage commitment. However, the regulatory events underlying these changes remain unclear. Here we investigate the dynamics of chromatin regulatory landscapes during embryogenesis at single-cell resolution. Using single-cell combinatorial indexing assay for transposase accessible chromatin with sequencing (sci-ATAC-seq), we profiled chromatin accessibility in over 20,000 single nuclei from fixed Drosophila melanogaster embryos spanning three landmark embryonic stages: 2–4 h after egg laying (predominantly stage 5 blastoderm nuclei), when each embryo comprises around 6,000 multipotent cells; 6–8 h after egg laying (predominantly stage 10–11), to capture a midpoint in embryonic development when major lineages in the mesoderm and ectoderm are specified; and 10–12 h after egg laying (predominantly stage 13), when each of the embryo’s more than 20,000 cells are undergoing terminal differentiation. Our results show that there is spatial heterogeneity in the accessibility of the regulatory genome before gastrulation, a feature that aligns with future cell fate, and that nuclei can be temporally ordered along developmental trajectories. During mid-embryogenesis, tissue granularity emerges such that individual cell types can be inferred by their chromatin accessibility while maintaining a signature of their germ layer of origin. Analysis of the data reveals overlapping usage of regulatory elements between cells of the endoderm and non-myogenic mesoderm, suggesting a common developmental program that is reminiscent of the mesendoderm lineage in other species. We identify 30,075 distal regulatory elements that exhibit tissue-specific accessibility. We validated the germ-layer specificity of a subset of these predicted enhancers in transgenic embryos, achieving an accuracy of 90%. Overall, our results demonstrate the power of shotgun single-cell profiling of embryos to resolve dynamic changes in the chromatin landscape during development, and to uncover the cis-regulatory programs of metazoan germ layers and cell types.


bioRxiv | 2017

Comprehensive single cell transcriptional profiling of a multicellular organism by combinatorial indexing

Junyue Cao; Jonathan S. Packer; Vijay Ramani; Darren A. Cusanovich; Chau Huynh; Riza Daza; Xiaojie Qiu; Choli Lee; Scott N. Furlan; Andrew Adey; Robert H. Waterston; Cole Trapnell; Jay Shendure

Conventional methods for profiling the molecular content of biological samples fail to resolve heterogeneity that is present at the level of single cells. In the past few years, single cell RNA sequencing has emerged as a powerful strategy for overcoming this challenge. However, its adoption has been limited by a paucity of methods that are at once simple to implement and cost effective to scale massively. Here, we describe a combinatorial indexing strategy to profile the transcriptomes of large numbers of single cells or single nuclei without requiring the physical isolation of each cell (Single cell Combinatorial Indexing RNA-seq or sci-RNA-seq). We show that sci-RNA-seq can be used to efficiently profile the transcriptomes of tens-of-thousands of single cells per experiment, and demonstrate that we can stratify cell types from these data. Key advantages of sci-RNA-seq over contemporary alternatives such as droplet-based single cell RNA-seq include sublinear cost scaling, a reliance on widely available reagents and equipment, the ability to concurrently process many samples within a single workflow, compatibility with methanol fixation of cells, cell capture based on DNA content rather than cell size, and the flexibility to profile either cells or nuclei. As a demonstration of sci-RNA-seq, we profile the transcriptomes of 42,035 single cells from C. elegans at the L2 stage, effectively 50-fold “shotgun cellular coverage” of the somatic cell composition of this organism at this stage. We identify 27 distinct cell types, including rare cell types such as the two distal tip cells of the developing gonad, estimate consensus expression profiles and define cell-type specific and selective genes. Given that C. elegans is the only organism with a fully mapped cellular lineage, these data represent a rich resource for future methods aimed at defining cell types and states. They will advance our understanding of developmental biology, and constitute a major step towards a comprehensive, single-cell molecular atlas of a whole animal.

Collaboration


Dive into the Darren A. Cusanovich's collaboration.

Top Co-Authors

Avatar

Jay Shendure

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Cole Trapnell

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Riza Daza

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Yoav Gilad

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Choli Lee

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaojie Qiu

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge