Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Adey is active.

Publication


Featured researches published by Andrew Adey.


Genome Biology | 2010

Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition

Andrew Adey; Hilary G. Morrison; Asan; Xu Xun; Jacob O. Kitzman; Emily H. Turner; Bethany Stackhouse; Alexandra P. MacKenzie; Nicholas C Caruccio; Xiuqing Zhang; Jay Shendure

We characterize and extend a highly efficient method for constructing shotgun fragment libraries in which transposase catalyzes in vitro DNA fragmentation and adaptor incorporation simultaneously. We apply this method to sequencing a human genome and find that coverage biases are comparable to those of conventional protocols. We also extend its capabilities by developing protocols for sub-nanogram library construction, exome capture from 50 ng of input DNA, PCR-free and colony PCR library construction, and 96-plex sample indexing.


Science | 2015

Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing

Darren A. Cusanovich; Riza Daza; Andrew Adey; Hannah A. Pliner; Lena Christiansen; Kevin L. Gunderson; Cole Trapnell; Jay Shendure

Chromatin state and the single cell Identifying the chromatin state of any single cell, which may or may not have a different function or represent different stages relative to others collected within any single culture, experiment, or tissue, has been challenging. Cusanovitch et al. skirted previously identified technological limitations to identify regions of accessible chromatin at single-cell resolution. Combinatorial cellular indexing, a strategy for multiplex barcoding of thousands of single cells per experiment, was successfully used to investigate the genome-wide chromatin accessibility landscape in each of over 15,000 single cells. Science, this issue p. 910 Combinatorial indexing can identify chromatin states at single-cell resolution. Technical advances have enabled the collection of genome and transcriptome data sets with single-cell resolution. However, single-cell characterization of the epigenome has remained challenging. Furthermore, because cells must be physically separated before biochemical processing, conventional single-cell preparatory methods scale linearly. We applied combinatorial cellular indexing to measure chromatin accessibility in thousands of single cells per assay, circumventing the need for compartmentalization of individual cells. We report chromatin accessibility profiles from more than 15,000 single cells and use these data to cluster cells on the basis of chromatin accessibility landscapes. We identify modules of coordinately regulated chromatin accessibility at the level of single cells both between and within cell types, with a scalable method that may accelerate progress toward a human cell atlas.


Nature Biotechnology | 2011

Haplotype-resolved genome sequencing of a Gujarati Indian individual

Jacob O. Kitzman; Alexandra P. MacKenzie; Andrew Adey; Joseph Hiatt; Rupali P Patwardhan; Peter H. Sudmant; Sarah B. Ng; Can Alkan; Ruolan Qiu; Evan E. Eichler; Jay Shendure

Haplotype information is essential to the complete description and interpretation of genomes, genetic diversity and genetic ancestry. Although individual human genome sequencing is increasingly routine, nearly all such genomes are unresolved with respect to haplotype. Here we combine the throughput of massively parallel sequencing with the contiguity information provided by large-insert cloning to experimentally determine the haplotype-resolved genome of a South Asian individual. A single fosmid library was split into a modest number of pools, each providing ∼3% physical coverage of the diploid genome. Sequencing of each pool yielded reads overwhelmingly derived from only one homologous chromosome at any given location. These data were combined with whole-genome shotgun sequence to directly phase 94% of ascertained heterozygous single nucleotide polymorphisms (SNPs) into long haplotype blocks (N50 of 386 kilobases (kbp)). This method also facilitates the analysis of structural variation, for example, to anchor novel insertions to specific locations and haplotypes.


Nature Biotechnology | 2014

Decoding long nanopore sequencing reads of natural DNA

Andrew H. Laszlo; Ian M. Derrington; Brian C. Ross; Henry Brinkerhoff; Andrew Adey; Ian C. Nova; Jonathan M. Craig; Kyle W. Langford; Jenny Mae Samson; Riza Daza; Kenji Doering; Jay Shendure; Jens H. Gundlach

Nanopore sequencing of DNA is a single-molecule technique that may achieve long reads, low cost and high speed with minimal sample preparation and instrumentation. Here, we build on recent progress with respect to nanopore resolution and DNA control to interpret the procession of ion current levels observed during the translocation of DNA through the pore MspA. As approximately four nucleotides affect the ion current of each level, we measured the ion current corresponding to all 256 four-nucleotide combinations (quadromers). This quadromer map is highly predictive of ion current levels of previously unmeasured sequences derived from the bacteriophage phi X 174 genome. Furthermore, we show nanopore sequencing reads of phi X 174 up to 4,500 bases in length, which can be unambiguously aligned to the phi X 174 reference genome, and demonstrate proof-of-concept utility with respect to hybrid genome assembly and polymorphism detection. This work provides a foundation for nanopore sequencing of long, natural DNA strands.


Nature Biotechnology | 2013

Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions

Joshua N. Burton; Andrew Adey; Rupali P Patwardhan; Ruolan Qiu; Jacob O. Kitzman; Jay Shendure

Genomes assembled de novo from short reads are highly fragmented relative to the finished chromosomes of Homo sapiens and key model organisms generated by the Human Genome Project. To address this problem, we need scalable, cost-effective methods to obtain assemblies with chromosome-scale contiguity. Here we show that genome-wide chromatin interaction data sets, such as those generated by Hi-C, are a rich source of long-range information for assigning, ordering and orienting genomic sequences to chromosomes, including across centromeres. To exploit this finding, we developed an algorithm that uses Hi-C data for ultra-long-range scaffolding of de novo genome assemblies. We demonstrate the approach by combining shotgun fragment and short jump mate-pair sequences with Hi-C data to generate chromosome-scale de novo assemblies of the human, mouse and Drosophila genomes, achieving—for the human genome—98% accuracy in assigning scaffolds to chromosome groups and 99% accuracy in ordering and orienting scaffolds within chromosome groups. Hi-C data can also be used to validate chromosomal translocations in cancer genomes.


The Journal of Molecular Diagnostics | 2014

Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens

Colin C. Pritchard; Stephen J. Salipante; Karen M. Koehler; Christina Smith; Sheena M. Scroggins; Brent L. Wood; David Wu; Ming K. Lee; Suzanne M. Dintzis; Andrew Adey; Yajuan Liu; Keith D. Eaton; Renato Martins; Kari Stricker; Kim Margolin; Noah G. Hoffman; Jane E. Churpek; Jonathan F. Tait; Mary Claire King; Tom Walsh

Recent years have seen development and implementation of anticancer therapies targeted to particular gene mutations, but methods to assay clinical cancer specimens in a comprehensive way for the critical mutations remain underdeveloped. We have developed UW-OncoPlex, a clinical molecular diagnostic assay to provide simultaneous deep-sequencing information, based on >500× average coverage, for all classes of mutations in 194 clinically relevant genes. To validate UW-OncoPlex, we tested 98 previously characterized clinical tumor specimens from 10 different cancer types, including 41 formalin-fixed paraffin-embedded tissue samples. Mixing studies indicated reliable mutation detection in samples with ≥ 10% tumor cells. In clinical samples with ≥ 10% tumor cells, UW-OncoPlex correctly identified 129 of 130 known mutations [sensitivity 99.2%, (95% CI, 95.8%-99.9%)], including single nucleotide variants, small insertions and deletions, internal tandem duplications, gene copy number gains and amplifications, gene copy losses, chromosomal gains and losses, and actionable genomic rearrangements, including ALK-EML4, ROS1, PML-RARA, and BCR-ABL. In the same samples, the assay also identified actionable point mutations in genes not previously analyzed and novel gene rearrangements of MLL and GRIK4 in melanoma, and of ASXL1, PIK3R1, and SGCZ in acute myeloid leukemia. To best guide existing and emerging treatment regimens and facilitate integration of genomic testing with patient care, we developed a framework for data analysis, decision support, and reporting clinically actionable results.


Nature | 2013

The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line

Andrew Adey; Joshua N. Burton; Jacob O. Kitzman; Joseph Hiatt; Alexandra P. Lewis; Beth Martin; Ruolan Qiu; Choli Lee; Jay Shendure

The HeLa cell line was established in 1951 from cervical cancer cells taken from a patient, Henrietta Lacks. This was the first successful attempt to immortalize human-derived cells in vitro. The robust growth and unrestricted distribution of HeLa cells resulted in its broad adoption—both intentionally and through widespread cross-contamination—and for the past 60 years it has served a role analogous to that of a model organism. The cumulative impact of the HeLa cell line on research is demonstrated by its occurrence in more than 74,000 PubMed abstracts (approximately 0.3%). The genomic architecture of HeLa remains largely unexplored beyond its karyotype, partly because like many cancers, its extensive aneuploidy renders such analyses challenging. We carried out haplotype-resolved whole-genome sequencing of the HeLa CCL-2 strain, examined point- and indel-mutation variations, mapped copy-number variations and loss of heterozygosity regions, and phased variants across full chromosome arms. We also investigated variation and copy-number profiles for HeLa S3 and eight additional strains. We find that HeLa is relatively stable in terms of point variation, with few new mutations accumulating after early passaging. Haplotype resolution facilitated reconstruction of an amplified, highly rearranged region of chromosome 8q24.21 at which integration of the human papilloma virus type 18 (HPV-18) genome occurred and that is likely to be the event that initiated tumorigenesis. We combined these maps with RNA-seq and ENCODE Project data sets to phase the HeLa epigenome. This revealed strong, haplotype-specific activation of the proto-oncogene MYC by the integrated HPV-18 genome approximately 500 kilobases upstream, and enabled global analyses of the relationship between gene dosage and expression. These data provide an extensively phased, high-quality reference genome for past and future experiments relying on HeLa, and demonstrate the value of haplotype resolution for characterizing cancer genomes and epigenomes.


Science | 2017

Comprehensive single-cell transcriptional profiling of a multicellular organism

Junyue Cao; Jonathan S. Packer; Vijay Ramani; Darren A. Cusanovich; Chau Huynh; Riza Daza; Xiaojie Qiu; Choli Lee; Scott N. Furlan; Andrew Adey; Robert H. Waterston; Cole Trapnell; Jay Shendure

Sequencing each cell of the nematode Single-cell sequencing is challenging owing to the limited biological material available in an individual cell and the high cost of sequencing across multiple cells. Cao et al. developed a two-step combinatorial barcoding method to profile both single-cell and single-nucleus transcriptomes without requiring physical isolation of each cell. The authors profiled almost 50,000 single cells from an individual Caenorhabditis elegans larval stage and were able to identify and recover information from different, even rare, cell types. Science, this issue p. 661 Single-cell combinatorial indexing RNA sequencing achieves more than 50-fold cellular coverage of a developing nematode worm. To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold “shotgun” cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type–specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms.


Nature Protocols | 2013

Tagmentation-based whole-genome bisulfite sequencing

Qi Wang; Lei Gu; Andrew Adey; Bernhard Radlwimmer; Wei Wang; Volker Hovestadt; Marion Bähr; Stephan Wolf; Jay Shendure; Roland Eils; Christoph Plass; Dieter Weichenhan

Epigenetic modifications such as carbon 5 methylation of the cytosine base in a CpG dinucleotide context are involved in the onset and progression of human diseases. A comprehensive understanding of the role of genome-wide DNA methylation patterns, the methylome, requires quantitative determination of the methylation states of all CpG sites in a genome. So far, analyses of the complete methylome by whole-genome bisulfite sequencing (WGBS) are rare because of the required large DNA quantities, substantial bioinformatic resources and high sequencing costs. Here we describe a detailed protocol for tagmentation-based WGBS (T-WGBS) and demonstrate its reliability in comparison with conventional WGBS. In T-WGBS, a hyperactive Tn5 transposase fragments the DNA and appends sequencing adapters in a single step. T-WGBS requires not more than 20 ng of input DNA; hence, the protocol allows the comprehensive methylome analysis of limited amounts of DNA isolated from precious biological specimens. The T-WGBS library preparation takes 2 d.


Nature Methods | 2017

Sequencing thousands of single-cell genomes with combinatorial indexing

Sarah A Vitak; Kristof A Torkenczy; Jimi L Rosenkrantz; Andrew J Fields; Lena Christiansen; Melissa H. Wong; Lucia Carbone; Andrew Adey

Single-cell genome sequencing has proven valuable for the detection of somatic variation, particularly in the context of tumor evolution. Current technologies suffer from high library construction costs, which restrict the number of cells that can be assessed and thus impose limitations on the ability to measure heterogeneity within a tissue. Here, we present single-cell combinatorial indexed sequencing (SCI-seq) as a means of simultaneously generating thousands of low-pass single-cell libraries for detection of somatic copy-number variants. We constructed libraries for 16,698 single cells from a combination of cultured cell lines, primate frontal cortex tissue and two human adenocarcinomas, and obtained a detailed assessment of subclonal variation within a pancreatic tumor.

Collaboration


Dive into the Andrew Adey's collaboration.

Top Co-Authors

Avatar

Jay Shendure

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cole Trapnell

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Riza Daza

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Joseph Hiatt

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Choli Lee

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akash Kumar

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge