Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darren Kahler is active.

Publication


Featured researches published by Darren Kahler.


Medical Physics | 2010

Characterization of a real‐time surface image‐guided stereotactic positioning system

Jean L. Peng; Darren Kahler; Jonathan G. Li; S Samant; G Yan; Robert J. Amdur; Chihray Liu

PURPOSE The AlignRT3C system is an image-guided stereotactic positioning system (IGSPS) that provides real-time target localization. This study involves the first use of this system with three camera pods. The authors have evaluated its localization accuracy and tracking ability using a cone-beam computed tomography (CBCT) system and an optical tracking system in a clinical setting. METHODS A modified Rando head-and-neck phantom and five patients receiving intracranial stereotactic radiotherapy (SRT) were used to evaluate the calibration, registration, and position-tracking accuracies of the AlignRT3C system and to study surface reconstruction uncertainties, including the effects due to interfractional and intrafractional motion, skin tone, room light level, camera temperature, and image registration region of interest selection. System accuracy was validated through comparison with the Elekta kV CBCT system (XVI) and the Varian frameless SonArray (FSA) optical tracking system. Surface-image data sets were acquired with the AlignRT3C daily for the evaluation of pretreatment and interfractional and intrafractional motion for each patient. Results for two different reference image sets, planning CT surface contours (CTS) and previously recorded AlignRT3C optical surface images (ARTS), are reported. RESULTS The system origin displacements for the AlignRT3C and XVI systems agreed to within 1.3 mm and 0.7 degrees. Similar results were seen for AlignRT3C vs FSA. For the phantom displacements having couch angles of 0 degrees, those that utilized ART_S references resulted in a mean difference of 0.9 mm/0.4 degrees with respect to XVI and 0.3 mm/0.2 degrees with respect to FSA. For phantom displacements of more than +/- 10 mm and +/- 3 degrees, the maximum discrepancies between AlignRT and the XVI and FSA systems were 3.0 and 0.4 mm, respectively. For couch angles up to +/- 90 degrees, the mean (max.) difference between the AlignRT3C and FSA was 1.2 (2.3) mm/0.7 degrees (1.2 degrees). For all tests, the mean registration errors obtained using the CT_S references were approximately 1.3 mm/1.0 degrees larger than those obtained using the ART_S references. For the patient study, the mean differences in the pretreatment displacements were 0.3 mm/0.2 degrees between the AlignRT3C and XVI systems and 1.3 mm/1 degrees between the FSA and XVI systems. For noncoplanar treatments, interfractional motion displacements obtained using the ART_S and CT_S references resulted in 90th percentile differences within 2.1 mm/0.8 degrees and 3.3 mm/0.3 degrees, respectively, compared to the FSA system. Intrafractional displacements that were tracked for a maximum of 14 min were within 1 mm/1 degrees of those obtained with the FSA system. Uncertainties introduced by the bite-tray were as high as 3 mm/2 degrees for one patient. The combination of gantry, aSi detector panel, and x-ray tube blockage effects during the CBCT acquisition resulted in a registration error of approximately 3 mm. No skin-tone or surface deformation effects were seen with the limited patient sample. CONCLUSIONS AlignRT3C can be used as a nonionizing IGSPS with accuracy comparable to current image/marker-based systems. IGSPS and CBCT can be combined for high-precision positioning without the need for patient-attached localization devices.


International Journal of Radiation Oncology Biology Physics | 2010

Quality Assessment of Frameless Fractionated Stereotactic Radiotherapy Using Cone Beam Computed Tomography

L Peng; Darren Kahler; S Samant; Jonathan G. Li; Robert J. Amdur; Jatinder R. Palta; Chihray Liu

PURPOSE A quality assessment of intracranial stereotactic radiotherapy was performed using cone beam computed tomography (CBCT). Setup errors were analyzed for two groups of patients: (1) those who were positioned using a frameless SonArray (FSA) system and immobilized with a bite plate and thermoplastic (TP) mask (the bFSA group); and (2) those who were positioned by room laser and immobilized using a TP mask (the mLAS group). METHODS AND MATERIALS A quality assurance phantom was used to study the system differences between FSA and CBCT. The quality assessment was performed using an Elekta Synergy imager (XVI) (Elekta Oncology Systems, Norcross, GA) and an On-Board Imager (OBI) (Varian Medical Systems, Palo Alto, CA) for 25 patients. For the first three fractions, and weekly thereafter, the FSA system was used for patient positioning, after which CBCT was performed to obtain setup errors. RESULTS (1) Phantom tests: The mean differences in the isocenter displacements for the two systems was 1.2 ± 0.7 mm. No significant variances were seen between the XVI and OBI units (p~0.208). (2)Patient tests: The mean of the displacements between FSA and CBCT were independent of the CBCT system used; mean setup errors for the bFSA group were smaller (1.2 mm) than those of the mLAS group (3.2 mm) (p < 0.005). For the mLAS patients, the 90th percentile and the maximum rotational displacements were 3° and 5°, respectively. A 4-mm drift in setup accuracy occurred over the treatment course for 1 bFSA patient. CONCLUSIONS System differences of less than 1 mm between CBCT and FSA were seen. Error regression was observed for the bFSA patients, using CBCT (up to 4 mm) during the treatment course. For the mLAS group, daily CBCT imaging was needed to obtain acceptable setup accuracies.


Medical Physics | 2010

Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

C Fox; Tom Simon; Bill Simon; Darren Kahler; Jatinder R. Palta; Chihray Liu; G Yan

PURPOSE Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. METHODS In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm3 and a diode of surface area 0.64 mm2. The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10 x 10 cm2 field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. RESULTS Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a +/- 0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping parameter between in-plane and cross-plane measurements. This is primarily due to the directional difference in penumbral width measured by the FC65 chamber, which can more than double in profiles obtained with the detector stem parallel compared to perpendicular to the scan direction. For the more symmetric CC13 chamber the variation was only 3% between in-plane and cross-plane measurements. CONCLUSIONS The authors have shown that the detector response varies with detector type, depth, SSD, and detector scan direction. In-plane vs. cross-plane scanning can require calculation of a direction dependent response function. The effect of a 10% overall variation in the response function, for an ionization chamber, translates to a small deviation in the penumbra from that of the Edge detector measured profile when deconvolved. Due to the uncertainties introduced by deconvolution the Edge detector would be preferable in obtaining an approximation of the true profile, particularly for field sizes where the energy dependence of the diode can be neglected. However, an averaged response function could be utilized to provide a good approximation of the true profile for large ionization chambers and for larger fields for which diode detectors are not recommended.


Medical Physics | 2010

Wide field array calibration dependence on the stability of measured dose distributions

T Simon; William E. Simon; Darren Kahler; Jonathan G. Li; Chihray Liu

PURPOSE The aim of this work was to simulate the effect of dose distribution changes on detector array calibrations and to explore compensatory methods that are used during calibration measurements. METHODS The array calibration technique that was investigated is known as wide field (WF) calibration. Using this method, a linear array [y-axis (65 detectors) of the IC PROFILER (Sun Nuclear Corporation, Melbourne, FL)] is calibrated with three measurements (alpha, theta, and lamda); each measurement uses the same radiation field, which is larger than the array. For measurement configuration theta, the array is rotated by 180 degrees from its position in a; for lamda, the array is shifted by one detector from its position in theta. The relative detector sensitivities are then determined through ratios of detector readings at the same field locations (using theta and lamda). This method results in error propagation that is proportional to the number of detectors in the array. During the procedure, the calibration protocol operates under three postulates, which state that (a) the beam shape does not change between measurements; (b) the relative sensitivities of the detectors do not change; and (c) the scatter to the array does not change as the array is moved. The WF calibrations sensitivity to a postulate (a) violation was quantified by applying a sine shaped perturbation (of up to 0.1%) to a, theta, or lamda, and then determining the change relative to a baseline calibration. Postulate (a) violations were minimized by using a continuous beam and mechanized array movement during theta and lamda. A continuously on beam demonstrated more stable beam symmetry as compared to cycling the beam on and off between measurements. Additional side-scatter was also used to satisfy postulate (c). RESULTS Simulated symmetry perturbations of 0.1% to theta or lamda resulted in calibration errors of up to 2%; alpha was relatively immune to perturbation (<0.1% error). Wide field calibration error on a linear accelerator with similar symmetry variations was +/- 1.6%. Using a continuous beam during theta and lamda with additional side-scatter reduced the calibration error from +/- 1.6% to +/- 0.48%. CONCLUSIONS This work increased the reproducibility of WF calibrations by limiting the effect of measurement perturbations primarily due to linear accelerator symmetry variations. The same technique would work for any array using WF calibration.


Medical Physics | 2010

Characterization of a multi-axis ion chamber array

T Simon; Jakub Kozelka; William E. Simon; Darren Kahler; Jonathan G. Li; Chihray Liu

PURPOSE The aim of this work was to characterize a multi-axis ion chamber array (IC PROFILER; Sun Nuclear Corporation, Melbourne, FL, USA) that has the potential to simplify the acquisition of LINAC beam data. METHODS The IC PROFILER (or panel) measurement response was characterized with respect to radiation beam properties, including dose, dose per pulse, pulse rate frequency (PRF), and energy. Panel properties were also studied, including detector-calibration stability, power-on time, backscatter dependence, and the panels agreement with water tank measurements [profiles, fractional depth dose (FDD), and output factors]. RESULTS The panels relative deviation was typically within (+/-) 1% of an independent (or nominal) response for all properties that were tested. Notable results were (a) a detectable relative field shape change of approximately 1% with linear accelerator PRF changes; (b) a large range in backscatter thickness had a minimal effect on the measured dose distribution (typically less than 1%); (c) the error spread in profile comparison between the panel and scanning water tank (Blue Phantom, CC13; IBA Schwarzenbruck, DE) was approximately (+/-) 0.75%. CONCLUSIONS The ability of the panel to accurately reproduce water tank profiles, FDDs, and output factors is an indication of its abilities as a dosimetry system. The benefits of using the panel versus a scanning water tank are less setup time and less error susceptibility. The same measurements (including device setup and breakdown) for both systems took 180 min with the water tank versus 30 min with the panel. The time-savings increase as the measurement load is increased.


Journal of Applied Clinical Medical Physics | 2015

Impact of scanning parameters and breathing patterns on image quality and accuracy of tumor motion reconstruction in 4D CBCT: a phantom study

Soyoung Lee; G Yan; Bo Lu; Darren Kahler; Jonathan G. Li; Samant S. Sanjiv

Four-dimensional, cone-beam CT (4D CBCT) substantially reduces respiration-induced motion blurring artifacts in three-dimension (3D) CBCT. However, the image quality of 4D CBCT is significantly degraded which may affect its accuracy in localizing a mobile tumor for high-precision, image-guided radiation therapy (IGRT). The purpose of this study was to investigate the impact of scanning parameters (hereinafter collectively referred to as scanning sequence) and breathing patterns on the image quality and the accuracy of computed tumor trajectory for a commercial 4D CBCT system, in preparation for its clinical implementation. We simulated a series of periodic and aperiodic sinusoidal breathing patterns with a respiratory motion phantom. The aperiodic pattern was created by varying the period or amplitude of individual sinusoidal breathing cycles. 4D CBCT scans of the phantom were acquired with a manufacturer-supplied scanning sequence (4D-S-slow) and two in-house modified scanning sequences (4D-M-slow and 4D-M-fast). While 4D-S-slow used small field of view (FOV), partial rotation (200°), and no imaging filter, 4D-M-slow and 4D-M-fast used medium FOV, full rotation, and the F1 filter. The scanning speed was doubled in 4D-M-fast (100°/min gantry rotation). The image quality of the 4D CBCT scans was evaluated using contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and motion blurring ratio (MBR). The trajectory of the moving target was reconstructed by registering each phase of the 4D CBCT with a reference CT. The root-mean-squared-error (RMSE) analysis was used to quantify its accuracy. Significant decrease in CNR and SNR from 3D CBCT to 4D CBCT was observed. The 4D-S-slow and 4D-M-fast scans had comparable image quality, while the 4D-M-slow scans had better performance due to doubled projections. Both CNR and SNR decreased slightly as the breathing period increased, while no dependence on the amplitude was observed. The difference of both CNR and SNR between periodic and aperiodic breathing patterns was insignificant (p>0.48). At end-exhale phases, the motion blurring was negligible for both periodic and aperiodic breathing patterns; at mid-inhale phase, the motion blurring increased as the period, the amplitude or the amount of cycle-to-cycle variation on amplitude increased. Overall, the accuracy of localizing the moving target in 4D CBCT was within 2 mm under all studied cases. No difference in the RMSEs was noticed among the three scanning sequences. The 4D-M-fast scans, free of volume truncation artifacts, exhibited comparable image quality and accuracy in tumor motion reconstruction as the 4D-S-slow scans with reduced imaging dose (0.60 cGy vs. 0.99 cGy) due to the use of faster gantry rotation and the F1 filter, suggesting its suitability for clinical use. PACS number: 87.55.Qr.Four‐dimensional, cone‐beam CT (4D CBCT) substantially reduces respiration‐induced motion blurring artifacts in three‐dimension (3D) CBCT. However, the image quality of 4D CBCT is significantly degraded which may affect its accuracy in localizing a mobile tumor for high‐precision, image‐guided radiation therapy (IGRT). The purpose of this study was to investigate the impact of scanning parameters (hereinafter collectively referred to as scanning sequence) and breathing patterns on the image quality and the accuracy of computed tumor trajectory for a commercial 4D CBCT system, in preparation for its clinical implementation. We simulated a series of periodic and aperiodic sinusoidal breathing patterns with a respiratory motion phantom. The aperiodic pattern was created by varying the period or amplitude of individual sinusoidal breathing cycles. 4D CBCT scans of the phantom were acquired with a manufacturer‐supplied scanning sequence (4D‐S‐slow) and two in‐house modified scanning sequences (4D‐M‐slow and 4D‐M‐fast). While 4D‐S‐slow used small field of view (FOV), partial rotation (200°), and no imaging filter, 4D‐M‐slow and 4D‐M‐fast used medium FOV, full rotation, and the F1 filter. The scanning speed was doubled in 4D‐M‐fast (100°/min gantry rotation). The image quality of the 4D CBCT scans was evaluated using contrast‐to‐noise ratio (CNR), signal‐to‐noise ratio (SNR), and motion blurring ratio (MBR). The trajectory of the moving target was reconstructed by registering each phase of the 4D CBCT with a reference CT. The root‐mean‐squared‐error (RMSE) analysis was used to quantify its accuracy. Significant decrease in CNR and SNR from 3D CBCT to 4D CBCT was observed. The 4D‐S‐slow and 4D‐M‐fast scans had comparable image quality, while the 4D‐M‐slow scans had better performance due to doubled projections. Both CNR and SNR decreased slightly as the breathing period increased, while no dependence on the amplitude was observed. The difference of both CNR and SNR between periodic and aperiodic breathing patterns was insignificant (p>0.48). At end‐exhale phases, the motion blurring was negligible for both periodic and aperiodic breathing patterns; at mid‐inhale phase, the motion blurring increased as the period, the amplitude or the amount of cycle‐to‐cycle variation on amplitude increased. Overall, the accuracy of localizing the moving target in 4D CBCT was within 2 mm under all studied cases. No difference in the RMSEs was noticed among the three scanning sequences. The 4D‐M‐fast scans, free of volume truncation artifacts, exhibited comparable image quality and accuracy in tumor motion reconstruction as the 4D‐S‐slow scans with reduced imaging dose (0.60 cGy vs. 0.99 cGy) due to the use of faster gantry rotation and the F1 filter, suggesting its suitability for clinical use. PACS number: 87.55.Qr


Medical Physics | 2013

A study of IMRT planning parameters on planning efficiency, delivery efficiency, and plan quality

K Mittauer; Bo Lu; G Yan; Darren Kahler; Arun Gopal; Robert J. Amdur; Chihray Liu

PURPOSE To improve planning and delivery efficiency of head and neck IMRT without compromising planning quality through the evaluation of inverse planning parameters. METHODS Eleven head and neck patients with pre-existing IMRT treatment plans were selected for this retrospective study. The Pinnacle treatment planning system (TPS) was used to compute new treatment plans for each patient by varying the individual or the combined parameters of dose/fluence grid resolution, minimum MU per segment, and minimum segment area. Forty-five plans per patient were generated with the following variations: 4 dose/fluence grid resolution plans, 12 minimum segment area plans, 9 minimum MU plans, and 20 combined minimum segment area/minimum MU plans. Each plan was evaluated and compared to others based on dose volume histograms (DVHs) (i.e., plan quality), planning time, and delivery time. To evaluate delivery efficiency, a model was developed that estimated the delivery time of a treatment plan, and validated through measurements on an Elekta Synergy linear accelerator. RESULTS The uncertainty (i.e., variation) of the dose-volume index due to dose calculation grid variation was as high as 8.2% (5.5 Gy in absolute dose) for planning target volumes (PTVs) and 13.3% (2.1 Gy in absolute dose) for planning at risk volumes (PRVs). Comparison results of dose distributions indicated that smaller volumes were more susceptible to uncertainties. The grid resolution of a 4 mm dose grid with a 2 mm fluence grid was recommended, since it can reduce the final dose calculation time by 63% compared to the accepted standard (2 mm dose grid with a 2 mm fluence grid resolution) while maintaining a similar level of dose-volume index variation. Threshold values that maintained adequate plan quality (DVH results of the PTVs and PRVs remained satisfied for their dose objectives) were 5 cm2 for minimum segment area and 5 MU for minimum MU. As the minimum MU parameter was increased, the number of segments and delivery time were decreased. Increasing the minimum segment area parameter decreased the plan MU, but had less of an effect on the number of segments and delivery time. Our delivery time model predicted delivery time to within 1.8%. CONCLUSIONS Increasing the dose grid while maintaining a small fluence grid allows for improved planning efficiency without compromising plan quality. Delivery efficiency can be improved by increasing the minimum MU, but not the minimum segment area. However, increasing the respective minimum MU and/or the minimum segment area to any value greater than 5 MU and 5 cm2 is not recommended because it degrades plan quality.PURPOSE To improve planning and delivery efficiency of head and neck IMRT without compromising planning quality through the evaluation of inverse planning parameters. METHODS Eleven head and neck patients with pre-existing IMRT treatment plans were selected for this retrospective study. The Pinnacle treatment planning system (TPS) was used to compute new treatment plans for each patient by varying the individual or the combined parameters of dose∕fluence grid resolution, minimum MU per segment, and minimum segment area. Forty-five plans per patient were generated with the following variations: 4 dose∕fluence grid resolution plans, 12 minimum segment area plans, 9 minimum MU plans, and 20 combined minimum segment area∕minimum MU plans. Each plan was evaluated and compared to others based on dose volume histograms (DVHs) (i.e., plan quality), planning time, and delivery time. To evaluate delivery efficiency, a model was developed that estimated the delivery time of a treatment plan, and validated through measurements on an Elekta Synergy linear accelerator. RESULTS The uncertainty (i.e., variation) of the dose-volume index due to dose calculation grid variation was as high as 8.2% (5.5 Gy in absolute dose) for planning target volumes (PTVs) and 13.3% (2.1 Gy in absolute dose) for planning at risk volumes (PRVs). Comparison results of dose distributions indicated that smaller volumes were more susceptible to uncertainties. The grid resolution of a 4 mm dose grid with a 2 mm fluence grid was recommended, since it can reduce the final dose calculation time by 63% compared to the accepted standard (2 mm dose grid with a 2 mm fluence grid resolution) while maintaining a similar level of dose-volume index variation. Threshold values that maintained adequate plan quality (DVH results of the PTVs and PRVs remained satisfied for their dose objectives) were 5 cm(2) for minimum segment area and 5 MU for minimum MU. As the minimum MU parameter was increased, the number of segments and delivery time were decreased. Increasing the minimum segment area parameter decreased the plan MU, but had less of an effect on the number of segments and delivery time. Our delivery time model predicted delivery time to within 1.8%. CONCLUSIONS Increasing the dose grid while maintaining a small fluence grid allows for improved planning efficiency without compromising plan quality. Delivery efficiency can be improved by increasing the minimum MU, but not the minimum segment area. However, increasing the respective minimum MU and∕or the minimum segment area to any value greater than 5 MU and 5 cm(2) is not recommended because it degrades plan quality.


Medical Physics | 2011

An approach for online evaluations of dose consequences caused by small rotational setup errors in intracranial stereotactic radiation therapy

Bo Lu; Jonathan G. Li; Darren Kahler; G Yan; K Mittauer; Wenyin Shi; Paul Okunieff; Chihray Liu

PURPOSE The purpose of this work is to investigate the impact of small rotational errors on the magnitudes and distributions of spatial dose variations for intracranial stereotactic radiotherapy (SRT) treatment setups, and to assess the feasibility of using the original dose map overlaid with rotated contours (ODMORC) method as a fast, online evaluation tool to estimate dose changes (using DVHs) to clinical target volumes (CTVs) and organs-at-risks (OARs) caused by small rotational setup errors. METHODS Fifteen intracranial SRT cases treated with either three-dimensional conformal radiation therapy (3DCRT) or intensity-modulated radiation therapy (IMRT) techniques were chosen for the study. Selected cases have a variety of anatomical dimensions and pathologies. Angles of ±3° and ±5° in all directions were selected to simulate the rotational errors. Dose variations in different regions of the brain, CTVs, and OARs were evaluated to illustrate the various spatial effects of dose differences before and after rotations. DVHs accounting for rotations that were recomputed by the treatment planning system (TPS) and those generated by the ODMORC method were compared. A framework of a fast algorithm for multicontour rotation implemented by ODMORC is introduced as well. RESULTS The average values of relative dose variations between original dose and recomputed dose accounting for rotations were greater than 4.0% and 10.0% in absolute mean and in standard deviation, respectively, at the skull and adjacent regions for all cases. They were less than 1.0% and 2.5% in absolute mean and in standard deviation, respectively, for dose points 3 mm away from the skull. The results indicated that spatial dose to any part of the brain organs or tumors separated from the skull or head surface would be relatively stable before and after rotations. Statistical data of CTVs and OARs indicate the lens and cochleas have the large dose variations before and after rotations, whereas the remaining ROIs have insignificant dose differences. DVH comparisons suggest that the ODMORC method is able to estimate the DVH of CTVs fairly accurately (within 1.5% of relative dose differences for evaluation volumes). The results also show that most of the OARs including the brain stem, spinal cord, chiasm, hippocampuses, optic nerves, and retinas, which were relatively distal from the skull and surface, had good agreement (within 2.0% of relative dose differences for 0.1 cc of the volumes ) between the ODMORC method and the recomputation, whereas OARs more proximate to the bone-tissue interface or surface, such as the lenses and cochlea, had larger dose variations (greater than 5.0%) for some cases due to the incapability of the ODMORC to account for scatter contribution variations proximate to interfaces and intrinsic dose calculation uncertainties for ROIs with small volumes. CONCLUSIONS The ODMORC method can be implemented as an online evaluation system for rotation-induced dose changes of CTVs and most OARs and for other related dose consequence analyses.


Journal of Applied Clinical Medical Physics | 2011

Feasibility study of performing IGRT system daily QA using a commercial QA device

Jean L. Peng; Darren Kahler; Jonathan G. Li; Robert J. Amdur; K Vanek; Chihray Liu

The purpose of this study was to investigate the feasibility of using a single QA device for comprehensive, efficient daily QA of a linear accelerator (Linac) and three image‐guided stereotactic positioning systems (IGSPSs). The Sun Nuclear Daily QA 3 (DQA3) device was used to perform daily dosimetry and mechanical accuracy tests for an Elekta Linac, as well as daily image geometric and isocenter coincidence accuracy tests for three IGSPSs: the AlignRT surface imaging system; the frameless SonArray optical tracking System (FSA) and the Elekta kV CBCT. The DQA3 can also be used for couch positioning, repositioning, and rotational tests during the monthly QA. Based on phantom imaging, the Linac coordinate system determined using AlignRT was within 0.7 mm/0.6° of that of the CBCT system. The difference is attributable to the different calibration methods that are utilized for these two systems. The laser alignment was within 0.5 mm of the isocenter location determined with the three IGSPSs. The ODI constancy was ± 0.5 mm. For gantry and table angles of 0°, the mean isocenter displacement vectors determined using the three systems were within 0.7 mm and 0.6° of one another. Isocenter rotational offsets measured with the systems were all ≤ 0.5°. For photon and electron beams tested over a period of eight months, the output was verified to remain within 2%, energy variations were within 2%, and the symmetry and flatness were within 1%. The field size and light‐radiation coincidence were within 1mm ± 1 mm. For dosimetry reproducibility, the standard deviation was within 0.2% for all tests and all energies, except for photon energy variation which was 0.6%. The total measurement time for all tasks took less than 15 minutes per QA session compared to 40 minutes with our previous procedure, which utilized an individual QA device for each IGSPS. The DQA3 can be used for accurate and efficient Linac and IGSPS daily QA. It shortens QA device setup time, eliminates errors introduced by changing phantoms to perform different tests, and streamlines the task of performing dosimetric checks. PACS number: 87.56.Fc


Medical Physics | 2009

An MLC calibration method using a detector array

T Simon; Darren Kahler; William E. Simon; C Fox; Jonathan G. Li; Jatinder R. Palta; Chihray Liu

PURPOSE The authors have developed a quantitative calibration method for a multileaf collimator (MLC) which measures individual leaf positions relative to the MLC backup jaw on an Elekta Synergy linear accelerator. METHODS The method utilizes a commercially available two-axis detector array (Profiler 2; Sun Nuclear Corporation, Melbourne, FL). To calibrate the MLC bank, its backup jaw is positioned at the central axis and the opposing jaw is retracted to create a half-beam configuration. The position of the backup jaws field edge is then measured with the array to obtain what is termed the radiation defined reference line. The positions of the individual leaf ends relative to this reference line are then inferred by the detector response in the leaf end penumbra. Iteratively adjusting and remeasuring the leaf end positions to within specifications completes the calibration. Using the backup jaw as a reference for the leaf end positions is based on three assumptions: (1) The leading edge of an MLC leaf bank is parallel to its backup jaws leading edge, (2) the backup jaw position is reproducible, and (3) the measured radiation field edge created by each leaf end is representative of that leafs position. Data from an electronic portal imaging device (EPID) were used in a similar analysis to check the results obtained with the array. RESULTS The relative leaf end positions measured with the array differed from those measured with the EPID by an average of 0.11+/-0.09 mm per leaf. The maximum leaf positional change measured with the Profiler 2 over a 3 month period was 0.51 mm. A leaf positional accuracy of +/-0.4 mm is easily attainable through the iterative calibration process. The method requires an average of 40 min to measure both leaf banks. CONCLUSIONS This work demonstrates that the Profiler 2 is an effective tool for efficient and quantitative MLC quality assurance and calibration.

Collaboration


Dive into the Darren Kahler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Lu

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

C Liu

University of Florida

View shared research outputs
Top Co-Authors

Avatar

G Yan

University of Florida

View shared research outputs
Top Co-Authors

Avatar

S Samant

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J Peng

University of Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge