Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan G. Li is active.

Publication


Featured researches published by Jonathan G. Li.


Physics in Medicine and Biology | 2003

Leaf sequencing algorithms for segmented multileaf collimation.

Srijit Kamath; Sartaj Sahni; Jonathan G. Li; Jatinder R. Palta; Sanjay Ranka

The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves.


Medical Physics | 2006

Important considerations for radiochromic film dosimetry with flatbed CCD scanners and EBT GAFCHROMIC® film

B Lynch; Jakub Kozelka; Manisha K. Ranade; Jonathan G. Li; William E. Simon

In this study, we present three significant artifacts that have the potential to negatively impact the accuracy and precision of film dosimetry measurements made using GAFCHROMIC® EBT radiochromic film when read out with CCD flatbed scanners. Films were scanned using three commonly employed instruments: a Macbeth TD932 spot densitometer, an Epson Expression 1680 CCD array scanner, and a Microtek ScanMaker i900 CCD array scanner. For the two scanners we assessed the variation in optical density (OD) of GAFCHROMIC EBT film with scanning bed position, angular rotation of the film with respect to the scan line direction, and temperature inside the scanner due to repeated scanning. Scanning uniform radiochromic films demonstrated a distinct bowing effect in profiles in the direction of the CCD array with a nonuniformity of up to 17%. Profiles along a direction orthogonal to the CCD array demonstrated a 7% variation. A strong angular dependence was found in measurements made with the flatbed scanners; the effect could not be reproduced with the spot densitometer. An IMRT quality assurance film was scanned twice rotating the film 90° between the scans. For films scanned on the Epson scanner, up to 12% variation was observed in unirradiated EBT films rotated between 0° and 90°, which decreased to approximately 8% for EBT films irradiated to 300cGy. Variations of up to 80% were observed for films scanned with the Microtek scanner. The scanners were found to significantly increase the film temperature with repeated scanning. Film temperature between 18 and 33°C caused OD changes of approximately 7%. Considering these effects, we recommend adherence to a strict scanning protocol that includes: maintaining the orientation of films scanned on flatbed scanners, limiting scanning to the central portion of the scanner bed, and limiting the number of consecutive scans to minimize changes in OD caused by film heating.


Physics in Medicine and Biology | 2003

A novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planning

H. Edwin Romeijn; Ravindra K. Ahuja; Arvind Kumar; Jonathan G. Li

We present a novel linear programming (LP) based approach for efficiently solving the intensity modulated radiation therapy (IMRT) fluence-map optimization (FMO) problem to global optimality. Our model overcomes the apparent limitations of a linear-programming approach by approximating any convex objective function by a piecewise linear convex function. This approach allows us to retain the flexibility offered by general convex objective functions, while allowing us to formulate the FMO problem as a LP problem. In addition, a novel type of partial-volume constraint that bounds the tail averages of the differential dose-volume histograms of structures is imposed while retaining linearity as an alternative approach to improve dose homogeneity in the target volumes, and to attempt to spare as many critical structures as possible. The goal of this work is to develop a very rapid global optimization approach that finds high quality dose distributions. Implementation of this model has demonstrated excellent results. We found globally optimal solutions for eight 7-beam head-and-neck cases in less than 3 min of computational time on a single processor personal computer without the use of partial-volume constraints. Adding such constraints increased the running times by a factor of 2-3, but improved the sparing of critical structures. All cases demonstrated excellent target coverage (> 95%), target homogeneity (< 10% overdosing and < 7% underdosing) and organ sparing using at least one of the two models.


Physics in Medicine and Biology | 2004

A unifying framework for multi-criteria fluence map optimization models

H. Edwin Romeijn; Jonathan G. Li

Models for finding treatment plans for intensity modulated radiation therapy are usually based on a number of structure-based treatment plan evaluation criteria, which are often conflicting. Rather than formulating a model that a priori quantifies the trade-offs between these criteria, we consider a multi-criteria optimization approach that aims at finding the so-called undominated treatment plans. We present a unifying framework for studying multi-criteria optimization problems for treatment planning that establishes conditions under which treatment plan evaluation criteria can be transformed into convex criteria while preserving the set of undominated treatment plans. Such transformations are identified for many of the criteria that have been proposed to date, establishing equivalences between these criteria. In addition, it is shown that the use of a nonconvex criterion can often be avoided by transformation to an equivalent convex criterion. In particular, we show that models employing criteria such as tumour control probability, normal tissue complication probability, probability of uncomplicated tumour control, as well as sigmoidal transformations of (generalized) equivalent uniform dose are equivalent to models formulated in terms of separable voxel-based criteria that penalize dose in individual voxels.


International Journal of Radiation Oncology Biology Physics | 2001

ROLE OF BEAM ORIENTATION OPTIMIZATION IN INTENSITY- MODULATED RADIATION THERAPY

Andrei Pugachev; Jonathan G. Li; Arthur L. Boyer; Steven L. Hancock; Quynh-Thu Le; Sarah S. Donaldson; Lei Xing

PURPOSE To investigate the role of beam orientation optimization in intensity-modulated radiation therapy (IMRT) and to examine the potential benefits of noncoplanar intensity-modulated beams. METHODS AND MATERIALS A beam orientation optimization algorithm was implemented. For this purpose, system variables were divided into two groups: beam position (gantry and table angles) and beam profile (beamlet weights). Simulated annealing was used for beam orientation optimization and the simultaneous iterative inverse treatment planning algorithm (SIITP) for beam intensity profile optimization. Three clinical cases were studied: a localized prostate cancer, a nasopharyngeal cancer, and a paraspinal tumor. Nine fields were used for all treatments. For each case, 3 types of treatment plan optimization were performed: (1) beam intensity profiles were optimized for 9 equiangular spaced coplanar beams; (2) orientations and intensity profiles were optimized for 9 coplanar beams; (3) orientations and intensity profiles were optimized for 9 noncoplanar beams. RESULTS For the localized prostate case, all 3 types of optimization described above resulted in dose distributions of a similar quality. For the nasopharynx case, optimized noncoplanar beams provided a significant gain in the gross tumor volume coverage. For the paraspinal case, orientation optimization using noncoplanar beams resulted in better kidney sparing and improved gross tumor volume coverage. CONCLUSION The sensitivity of an IMRT treatment plan with respect to the selection of beam orientations varies from site to site. For some cases, the choice of beam orientations is important even when the number of beams is as large as 9. Noncoplanar beams provide an additional degree of freedom for IMRT treatment optimization and may allow for notable improvement in the quality of some complicated plans.


Medical Physics | 2010

Characterization of a real‐time surface image‐guided stereotactic positioning system

Jean L. Peng; Darren Kahler; Jonathan G. Li; S Samant; G Yan; Robert J. Amdur; Chihray Liu

PURPOSE The AlignRT3C system is an image-guided stereotactic positioning system (IGSPS) that provides real-time target localization. This study involves the first use of this system with three camera pods. The authors have evaluated its localization accuracy and tracking ability using a cone-beam computed tomography (CBCT) system and an optical tracking system in a clinical setting. METHODS A modified Rando head-and-neck phantom and five patients receiving intracranial stereotactic radiotherapy (SRT) were used to evaluate the calibration, registration, and position-tracking accuracies of the AlignRT3C system and to study surface reconstruction uncertainties, including the effects due to interfractional and intrafractional motion, skin tone, room light level, camera temperature, and image registration region of interest selection. System accuracy was validated through comparison with the Elekta kV CBCT system (XVI) and the Varian frameless SonArray (FSA) optical tracking system. Surface-image data sets were acquired with the AlignRT3C daily for the evaluation of pretreatment and interfractional and intrafractional motion for each patient. Results for two different reference image sets, planning CT surface contours (CTS) and previously recorded AlignRT3C optical surface images (ARTS), are reported. RESULTS The system origin displacements for the AlignRT3C and XVI systems agreed to within 1.3 mm and 0.7 degrees. Similar results were seen for AlignRT3C vs FSA. For the phantom displacements having couch angles of 0 degrees, those that utilized ART_S references resulted in a mean difference of 0.9 mm/0.4 degrees with respect to XVI and 0.3 mm/0.2 degrees with respect to FSA. For phantom displacements of more than +/- 10 mm and +/- 3 degrees, the maximum discrepancies between AlignRT and the XVI and FSA systems were 3.0 and 0.4 mm, respectively. For couch angles up to +/- 90 degrees, the mean (max.) difference between the AlignRT3C and FSA was 1.2 (2.3) mm/0.7 degrees (1.2 degrees). For all tests, the mean registration errors obtained using the CT_S references were approximately 1.3 mm/1.0 degrees larger than those obtained using the ART_S references. For the patient study, the mean differences in the pretreatment displacements were 0.3 mm/0.2 degrees between the AlignRT3C and XVI systems and 1.3 mm/1 degrees between the FSA and XVI systems. For noncoplanar treatments, interfractional motion displacements obtained using the ART_S and CT_S references resulted in 90th percentile differences within 2.1 mm/0.8 degrees and 3.3 mm/0.3 degrees, respectively, compared to the FSA system. Intrafractional displacements that were tracked for a maximum of 14 min were within 1 mm/1 degrees of those obtained with the FSA system. Uncertainties introduced by the bite-tray were as high as 3 mm/2 degrees for one patient. The combination of gantry, aSi detector panel, and x-ray tube blockage effects during the CBCT acquisition resulted in a registration error of approximately 3 mm. No skin-tone or surface deformation effects were seen with the limited patient sample. CONCLUSIONS AlignRT3C can be used as a nonionizing IGSPS with accuracy comparable to current image/marker-based systems. IGSPS and CBCT can be combined for high-precision positioning without the need for patient-attached localization devices.


International Journal of Radiation Oncology Biology Physics | 2009

Tumor Localization Using Cone-Beam CT Reduces Setup Margins in Conventionally Fractionated Radiotherapy for Lung Tumors

Anamaria R. Yeung; Jonathan G. Li; Wenyin Shi; Heather E. Newlin; A Chvetsov; Chihray Liu; Jatinder R. Palta; Kenneth R. Olivier

PURPOSE To determine whether setup margins can be reduced using cone-beam computed tomography (CBCT) to localize tumor in conventionally fractionated radiotherapy for lung tumors. METHODS AND MATERIALS A total of 22 lung cancer patients were treated with curative intent with conventionally fractionated radiotherapy using daily image guidance with CBCT. Of these, 13 lung cancer patients had sufficient CBCT scans for analysis (389 CBCT scans). The patients underwent treatment simulation in the BodyFix immobilization system using four-dimensional CT to account for respiratory motion. Daily alignment was first done according to skin tattoos, followed by CBCT. All 389 CBCT scans were retrospectively registered to the planning CT scans using automated soft-tissue and bony registration; the resulting couch shifts in three dimensions were recorded. RESULTS The daily alignment to skin tattoos with no image guidance resulted in systematic (Sigma) and random (sigma) errors of 3.2-5.6 mm and 2.0-3.5 mm, respectively. The margin required to account for the setup error introduced by aligning to skin tattoos with no image guidance was approximately 1-1.6 cm. The difference in the couch shifts obtained from the bone and soft-tissue registration resulted in systematic (Sigma) and random (sigma) errors of 1.5-4.1 mm and 1.8-5.3 mm, respectively. The margin required to account for the setup error introduced using bony anatomy as a surrogate for the target, instead of localizing the target itself, was 0.5-1.4 cm. CONCLUSION Using daily CBCT soft-tissue registration to localize the tumor in conventionally fractionated radiotherapy reduced the required setup margin by up to approximately 1.5 cm compared with both no image guidance and image guidance using bony anatomy as a surrogate for the target.


Medical Physics | 2004

An extensive log‐file analysis of step‐and‐shoot intensity modulated radiation therapy segment delivery errors

Anthony M. Stell; Jonathan G. Li; Omar A. Zeidan

We present a study to evaluate the monitor unit (MU), dosimetric, and leaf-motion errors found in the delivery of 91 step-and-shoot IMRT treatment plans performed at three nominal dose rates using a dual modality high energy Linac (Varian 2100 C/D, Varian Medical Systems Inc., Palo Alto, CA) equipped with a 120-leaf multileaf collimator (MLC). The analysis was performed by studying log files generated by the MLC controller system. Recent studies by our group have validated that the automatically generated MLC log files accurately record the actual system delivery. A total of 635 beams were delivered at three nominal dose rates: 100, 300, and 600 MU/min. The log files were manually retrieved and analysis software was developed to extract the recorded MU delivery and leaf positions for each segment. Our analysis revealed that the magnitude of segment MU errors were independent of the planned segment MUs. Segment MU errors were found to increase with dose rate having maximum errors per segment of +/-1.8 MU at 600 MU/min, +/-0.8 MU at 300 MU/min, and +/-0.5 MU at 100 MU/min. The total absolute MU error in each plan was observed to increase with the number of plan segments, with the trend increasing more rapidly for higher dose rates. Three dimensional dose distributions were recomputed based on the observed segment MU errors for three plans with large cumulative absolute MU errors. Comparison with the original treatment plans indicated no clinically significant consequences due to these errors. In addition, approximately 80% of the total segment deliveries reported at least one collimator leaf moving at least 1 mm (projected at isocenter) during segment delivery. Such errors occur near the end of segment delivery and have been previously observed by our group using a fast video-based electronic portal imaging device. At 600 MU/min, between 5% and 23% of the plan MUs were delivered during leaf motion that had exceeded a 1 mm position tolerance. These leaf motion errors were not included in the treatment plan recalculations performed in this study.


Radiotherapy and Oncology | 2000

Breast-conserving radiation therapy using combined electron and intensity-modulated radiotherapy technique

Jonathan G. Li; Scott S. Williams; Don R. Goffinet; Arthur L. Boyer; Lei Xing

BACKGROUND AND PURPOSE To explore the feasibility of a multi-modality breast-conserving radiation therapy treatment technique to reduce high dose to the ipsilateral lung and the heart when compared with the conventional treatment technique using two tangential fields. MATERIALS AND METHODS An electron beam with appropriate energy was combined with four intensity modulated photon beams. The direction of the electron beam was chosen to be tilted 10-20 degrees laterally from the anteroposterior direction. Two of the intensity-modulated photon beams had the same gantry angles as the conventional tangential fields, whereas the other two beams were rotated 15-25 degrees toward the anteroposterior directions from the first two photon beams. An iterative algorithm was developed which optimizes the weight of the electron beam as well as the fluence profiles of the photon beams for a given patient. Two breast cancer patients with early-stage breast tumors were planned with the new technique and the results were compared with those from 3D planning using tangential fields as well as 9-field intensity-modulated radiotherapy (IMRT) techniques. RESULTS The combined electron and IMRT plans showed better dose conformity to the target with significantly reduced dose to the ipsilateral lung and, in the case of the left-breast patient, reduced dose to the heart, than the tangential field plans. In both the right-sided and left-sided breast plans, the dose to other normal structures was similar to that from conventional plans and was much smaller than that from the 9-field IMRT plans. The optimized electron beam provided between 70 to 80% of the prescribed dose at the depth of maximum dose of the electron beam. CONCLUSIONS The combined electron and IMRT technique showed improvement over the conventional treatment technique using tangential fields with reduced dose to the ipsilateral lung and the heart. The customized beam directions of the four IMRT fields also kept the dose to other critical structures to a minimum.


Physics in Medicine and Biology | 2000

Monitor unit calculation for an intensity modulated photon field by a simple scatter-summation algorithm

Lei Xing; Y Chen; Gary Luxton; Jonathan G. Li; Arthur L. Boyer

An important issue in intensity modulated radiation therapy (IMRT) is the verification of the monitor unit (MU) calculation of the planning system using an independent procedure. Because of the intensity modulation and the dynamic nature of the delivery process, the problem becomes much more involved than that in conventional radiation therapy. In this work, a closed formula for MU calculation is derived. The approach is independent of the specific form of leaf sequence algorithms. It is straightforward to implement the procedure using a simple computer program. The approach is illustrated by a simplified example and is demonstrated by a few CORVUS (NOMOS Corporation, Sewickley, PA) treatment plans. The results indicate that it is robust and suitable for IMRT MU verification.

Collaboration


Dive into the Jonathan G. Li's collaboration.

Top Co-Authors

Avatar

C Liu

University of Florida

View shared research outputs
Top Co-Authors

Avatar

G Yan

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Lu

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J Palta

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siyong Kim

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge