Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darren T. Beck is active.

Publication


Featured researches published by Darren T. Beck.


Journal of Applied Physiology | 2016

Testosterone inhibits expression of lipogenic genes in visceral fat by an estrogen-dependent mechanism

A. Maleah Holland; Michael D. Roberts; Petey W. Mumford; C. Brooks Mobley; Wesley C. Kephart; Christine F. Conover; Luke A. Beggs; Alexander Balaez; Dana M. Otzel; Joshua F. Yarrow; Stephen E. Borst; Darren T. Beck

The influence of the aromatase enzyme on the chronic fat-sparing effects of testosterone requires further elucidation. Our purpose was to determine whether chronic anastrozole (AN, an aromatase inhibitor) treatment alters testosterone-mediated lipolytic/lipogenic gene expression in visceral fat. Ten-month-old Fischer 344 rats (n = 6/group) were subjected to sham surgery (SHAM), orchiectomy (ORX), ORX + treatment with testosterone enanthate (TEST, 7.0 mg/wk), or ORX + TEST + AN (0.5 mg/day), with drug treatment beginning 14 days postsurgery. At day 42, ORX animals exhibited nearly undetectable serum testosterone and 29% higher retroperitoneal fat mass than SHAM animals (P < 0.001). TEST produced a ∼380-415% higher serum testosterone than SHAM (P < 0.001) and completely prevented ORX-induced visceral fat gain (P < 0.001). Retroperitoneal fat was 21% and 16% lower in ORX + TEST than SHAM (P < 0.001) and ORX + TEST + AN (P = 0.007) animals, while serum estradiol (E2) was 62% (P = 0.024) and 87% (P = 0.010) higher, respectively. ORX stimulated lipogenic-related gene expression in visceral fat, demonstrated by ∼84-154% higher sterol regulatory element-binding protein-1 (SREBP-1, P = 0.023), fatty acid synthase (P = 0.01), and LPL (P < 0.001) mRNA than SHAM animals, effects that were completely prevented in ORX + TEST animals (P < 0.01 vs. ORX for all). Fatty acid synthase (P = 0.061, trend) and LPL (P = 0.043) mRNA levels were lower in ORX + TEST + AN than ORX animals and not different from SHAM animals but remained higher than in ORX + TEST animals (P < 0.05). In contrast, the ORX-induced elevation in SREBP-1 mRNA was not prevented by TEST + AN, with SREBP-1 expression remaining ∼117-171% higher than in SHAM and ORX + TEST animals (P < 0.01). Across groups, visceral fat mass and lipogenic-related gene expression were negatively associated with serum testosterone, but not E2 Aromatase inhibition constrains testosterone-induced visceral fat loss and the downregulation of key lipogenic genes at the mRNA level, indicating that E2 influences the visceral fat-sparing effects of testosterone.


Journal of Dairy Science | 2017

Whey protein-derived exosomes increase protein synthesis and hypertrophy in C2­C12 myotubes

C. Brooks Mobley; Petey W. Mumford; John J. McCarthy; Michael Miller; Kaelin C. Young; Jeffrey S. Martin; Darren T. Beck; Christopher M. Lockwood; Michael D. Roberts

We sought to examine potential amino acid independent mechanisms whereby hydrolyzed whey protein (WP) affects muscle protein synthesis (MPS) and anabolism in vitro. Specifically, we tested (1) whether 3-h and 6-h treatments of WP, essential amino acids, or l-leucine (Leu) affected MPS, and whether 6-h treatments with low-, medium-, or high doses of WP versus Leu affected MPS; (2) whether knockdown of the primary Leu transporter affected WP- and Leu-mediated changes in MPS, mammalian target of rapamycin (mTOR) signaling responses, or both, following 6-h treatments; (3) whether exosomes isolated from WP (WP-EXO) affected MPS, mTOR signaling responses, or both, compared with untreated (control) myotubes, following 6-h, 12-h, and 24-h treatments, and whether they affected myotube diameter following 24-h and 48-h treatments. For all treatments, 7-d post-differentiated C2C12 myotubes were examined. In experiment 1, 6-h WP treatments increased MPS compared with control (+46%), Leu (+24%), and essential amino acids (+25%). Moreover, the 6-h low-, medium-, and high WP treatments increased MPS by approximately 40 to 50% more than corresponding Leu treatments. In experiment 2 (LAT short hairpin RNA-transfected myotubes), 6-h WP treatments increased MPS compared with control (+18%) and Leu (+19%). In experiment 3, WP-EXO treatments increased MPS over controls at 12h (+18%) and 24h (+45%), and myotube diameters increased with 24-h (+24%) and 48-h (+40%) WP-EXO treatments compared with controls. The WP-EXO treatments did not appear to operate through mTOR signaling; instead, they increased mRNA and protein levels o eukaryotic initiation factor 4A. Bovine-specific microRNA following 24-h WP-EXO treatments were enriched in myotubes (chiefly miR-149-3p, miR-2881), but were not related to hypertrophic gene targets. To summarize, hydrolyzed WP-EXO increased skeletal MPS and anabolism in vitro, and this may be related to an unknown mechanism that increases translation initiation factors rather than enhancing mTOR signaling or the involvement of bovine-specific microRNA.


Frontiers in Physiology | 2017

Aging in rats differentially affects markers of transcriptional and translational capacity in soleus and plantaris muscle

Christopher B. Mobley; Petey W. Mumford; Wesley C. Kephart; Cody T. Haun; Angelia M. Holland; Darren T. Beck; Jeffrey S. Martin; Kaelin C. Young; Richard G. Anderson; Romil K. Patel; Ryan P. Lowery; Jacob M. Wilson; Michael D. Roberts

Alterations in transcriptional and translational mechanisms occur during skeletal muscle aging and such changes may contribute to age-related atrophy. Herein, we examined markers related to global transcriptional output (i.e., myonuclear number, total mRNA and RNA pol II levels), translational efficiency [i.e., eukaryotic initiation and elongation factor levels and muscle protein synthesis (MPS) levels] and translational capacity (ribosome density) in the slow-twitch soleus and fast-twitch plantaris muscles of male Fischer 344 rats aged 3, 6, 12, 18, and 24 months (n = 9–10 per group). We also examined alterations in markers of proteolysis and oxidative stress in these muscles (i.e., 20S proteasome activity, poly-ubiquinated protein levels and 4-HNE levels). Notable plantaris muscle observations included: (a) fiber cross sectional area (CSA) was 59% (p < 0.05) and 48% (p < 0.05) greater in 12 month vs. 3 month and 24 month rats, respectively, suggesting a peak lifetime value near 12 months and age-related atrophy by 24 months, (b) MPS levels were greatest in 18 month rats (p < 0.05) despite the onset of atrophy, (c) while regulators of ribosome biogenesis [c-Myc and upstream binding factor (UBF) protein levels] generally increased with age, ribosome density linearly decreased from 3 months of age and RNA polymerase (Pol) I protein levels were lowest in 24 month rats, and d) 20S proteasome activity was robustly up-regulated in 6 and 24 month rats (p < 0.05). Notable soleus muscle observations included: (a) fiber CSA was greatest in 6 month rats and was maintained in older age groups, and (b) 20S proteasome activity was modestly but significantly greater in 24 month vs. 3/12/18 month rats (p < 0.05), and (c) total mRNA levels (suggestive of transcriptional output) trended downward in older rats despite non-significant between-group differences in myonuclear number and/or RNA Pol II protein levels. Collectively, these findings suggest that plantaris, not soleus, atrophy occurs following 12 months of age in male Fisher rats and this may be due to translational deficits (i.e., changes in MPS and ribosome density) and/or increases in proteolysis rather than increased oxidative stress and/or alterations in global transcriptional mechanisms.


Scientific Reports | 2018

Soy protein supplementation is not androgenic or estrogenic in college-aged men when combined with resistance exercise training

Cody T. Haun; C. Brooks Mobley; Christopher G. Vann; Matthew A. Romero; Paul A. Roberson; Petey W. Mumford; Wesley C. Kephart; James C. Healy; Romil K. Patel; Shelby C. Osburn; Darren T. Beck; Robert D. Arnold; Ben Nie; Christopher M. Lockwood; Michael D. Roberts

It is currently unclear as to whether sex hormones are significantly affected by soy or whey protein consumption. Additionally, estrogenic signaling may be potentiated via soy protein supplementation due to the presence of phytoestrogenic isoflavones. Limited evidence suggests that whey protein supplementation may increase androgenic signalling. Therefore, the purpose of this study was to examine the effects of soy protein concentrate (SPC), whey protein concentrate (WPC), or placebo (PLA) supplementation on serum sex hormones, androgen signaling markers in muscle tissue, and estrogen signaling markers in subcutaneous (SQ) adipose tissue of previously untrained, college-aged men (n = 47, 20 ± 1 yrs) that resistance trained for 12 weeks. Fasting serum total testosterone increased pre- to post-training, but more so in subjects consuming WPC (p < 0.05), whereas serum 17β-estradiol remained unaltered. SQ estrogen receptor alpha (ERα) protein expression and hormone-sensitive lipase mRNA increased with training regardless of supplementation. Muscle androgen receptor (AR) mRNA increased while ornithine decarboxylase mRNA (a gene target indicative of androgen signaling) decreased with training regardless of supplementation (p < 0.05). No significant interactions of supplement and time were observed for adipose tissue ERα/β protein levels, muscle tissue AR protein levels, or mRNAs in either tissue indicative of altered estrogenic or androgenic activity. Interestingly, WPC had the largest effect on increasing type II muscle fiber cross sectional area values (Cohen’s d = 1.30), whereas SPC had the largest effect on increasing this metric in type I fibers (Cohen’s d = 0.84). These data suggest that, while isoflavones were detected in SPC, chronic WPC or SPC supplementation did not appreciably affect biomarkers related to muscle androgenic signaling or SQ estrogenic signaling. The noted fiber type-specific responses to WPC and SPC supplementation warrant future research.


Scientific Reports | 2018

Author Correction: Soy protein supplementation is not androgenic or estrogenic in college-aged men when combined with resistance exercise training

Cody T. Haun; C. Brooks Mobley; Christopher G. Vann; Matthew A. Romero; Paul A. Roberson; Petey W. Mumford; Wesley C. Kephart; James C. Healy; Romil K. Patel; Shelby C. Osburn; Darren T. Beck; Robert D. Arnold; Ben Nie; Christopher M. Lockwood; Michael D. Roberts

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.


Journal of Applied Physiology | 2018

Cross talk between androgen and Wnt signaling potentially contributes to age-related skeletal muscle atrophy in rats

Petey W. Mumford; Matthew A. Romero; Xuansong Mao; C. Brooks Mobley; Wesley C. Kephart; Cody T. Haun; Paul A. Roberson; Kaelin C. Young; Jeffrey S. Martin; Joshua F. Yarrow; Darren T. Beck; Michael D. Roberts

We sought to determine whether age-related gastrocnemius muscle mass loss was associated with parallel decrements in androgen receptor (AR) or select Wnt signaling markers. To test this hypothesis, serum-free and total testosterone (TEST) and gastrocnemius AR and Wnt signaling markers were analyzed in male Fischer 344 rats that were 3, 6, 12, 18, and 24 mo (mo) old ( n = 9 per group). Free and total TEST was greatest in 6 mo rats, and AR protein and Wnt5 protein levels linearly declined with aging. There were associations between Wnt5 protein levels and relative gastrocnemius mass ( r = 0.395, P = 0.007) as well as AR and Wnt5 protein levels (r = 0.670, P < 0.001). We next tested the hypothesis that Wnt5 affects muscle fiber size by treating C2C12-derived myotubes with lower (75 ng/ml) and higher (150 ng/ml) concentrations of recombinant Wnt5a protein. Both treatments increased myotube size ( P < 0.05) suggesting this ligand may affect muscle fiber size in vivo. We next tested if Wnt5a protein levels were androgen-modulated by examining 10-mo-old male Fischer 344 rats ( n = 10-11 per group) that were orchiectomized and treated with testosterone-enanthate (TEST-E); trenbolone enanthate (TREN), a nonaromatizable synthetic testosterone analogue; or a vehicle (ORX only) for 4 wk. Interestingly, TEST-E and TREN treatments increased Wnt5a protein in the androgen-sensitive levator ani/bulbocavernosus muscle compared with ORX only ( P < 0.05). To summarize, aromatizable and nonaromatizable androgens increase Wnt5a protein expression in skeletal muscle, age-related decrements in muscle AR may contribute Wnt5a protein decrements, and our in vitro data imply this mechanism may contribute to age-related muscle loss. NEW & NOTEWORTHY Results from this study demonstrate androgen and Wnt5 protein expression decrease with aging, and this may be a mechanism involved with age-related muscle loss.


American Journal of Physiology-cell Physiology | 2018

Acute and chronic resistance training downregulates select LINE-1 retrotransposon activity markers in human skeletal muscle

Matthew A. Romero; C. Brooks Mobley; Petey W. Mumford; Paul A. Roberson; Cody T. Haun; Wesley C. Kephart; James C. Healy; Darren T. Beck; Kaelin C. Young; Jeffrey S. Martin; Christopher M. Lockwood; Michael D. Roberts

Herein, we examined if acute or chronic resistance exercise affected markers of skeletal muscle long interspersed nuclear element-1 (LINE-1) retrotransposon activity. In study 1, 10 resistance-trained college-aged men performed three consecutive daily back squat sessions, and vastus lateralis biopsies were taken before (Pre), 2 h following session 1 (Post1), and 3 days following session 3 (Post2). In study 2, 13 untrained college-aged men performed a full-body resistance training program (3 days/wk), and vastus lateralis biopsies were taken before ( week 0) and ~72 h following training cessation ( week 12). In study 1, LINE-1 mRNA decreased 42-48% at Post1 and 2 ( P < 0.05), and reverse transcriptase (RT) activity trended downward at Post2 (-37%, P = 0.067). In study 2, LINE-1 mRNA trended downward at week 12 (-17%, P = 0.056) while LINE-1 promoter methylation increased (+142%, P = 0.041). Open reading frame (ORF)2p protein expression (-24%, P = 0.059) and RT activity (-26%, P = 0.063) also trended downward by week 12. Additionally, changes in RT activity versus satellite cell number were inversely associated ( r = -0.725, P = 0.008). Follow-up in vitro experiments demonstrated that 48-h treatments with lower doses (1 μM and 10 μM) of efavirenz and nevirapine (non-nucleoside RT inhibitors) increased myoblast proliferation ( P < 0.05). However, we observed a paradoxical decrease in myoblast proliferation with higher doses (50 μM) of efavirenz and delavirdine. This is the first report suggesting that resistance exercise downregulates markers of skeletal muscle LINE-1 activity. Given our discordant in vitro findings, future research is needed to thoroughly assess whether LINE-1-mediated RT activity enhances or blunts myoblast, or primary satellite cell, proliferative capacity.


The FASEB Journal | 2016

Myostatin Protein and Muscle Fiber Cross-Sectional Area are Associated with Increased Muscle Satellite Cell Number in 10 Month Old Fisher 344 Rats Treated with Testosterone and Trenbolone Enanthate

Darren T. Beck; Vincent J. Dalbo; C. Brooks Mobley; Christopher Ballmann; Wesley C. Kephart; Carlton D. Fox; Vincent Santucci; Luke A. Beggs; Alexander Balaez; Frederic J. Hoerr; Joshua F. Yarrow; Stephen E. Borst; Michael D. Roberts


The FASEB Journal | 2016

Markers of Muscle Protein Synthesis and Breakdown in Fast-Twitch Skeletal Muscle of Rodents Aged 3 to 24 Months

Petey W. Mumford; C. Brooks Mobley; Wesley C. Kephart; Cody T. Haun; A. Maleah Holland; Shelby C. Osburn; Darren T. Beck; Jeffery M. Martin; Kaelin C. Young; Andreas N. Kavazis; Ryan P. Lowery; Jake M. Wilson; Michael D. Roberts


Archive | 2014

Beck: Aromatase and Testosterone Administration

Darren T. Beck; Joshua F. Yarrow; Luke A. Beggs; Dana M. Otzel; Christine F. Conover; Julie R. Miller; Alexander Balaez; Sarah M. Combs; Alicia M. Leeper; Alyssa A. Williams; Stephanie A. Lachacz; Nigel Zheng; Thomas J. Wronski; Stephen E. Borst

Collaboration


Dive into the Darren T. Beck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaelin C. Young

Edward Via College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey S. Martin

Edward Via College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge