Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darren W. Johnson is active.

Publication


Featured researches published by Darren W. Johnson.


Molecular Ecology | 2010

Self‐recruitment and sweepstakes reproduction amid extensive gene flow in a coral‐reef fish

Mark R. Christie; Darren W. Johnson; Christopher D. Stallings; Mark A. Hixon

Identifying patterns of larval dispersal within marine metapopulations is vital for effective fisheries management, appropriate marine reserve design, and conservation efforts. We employed genetic markers (microsatellites) to determine dispersal patterns in bicolour damselfish (Pomacentridae: Stegastes partitus). Tissue samples of 751 fish were collected in 2004 and 2005 from 11 sites encompassing the Exuma Sound, Bahamas. Bayesian parentage analysis identified two parent–offspring pairs, which is remarkable given the large population sizes and 28 day pelagic larval duration of bicolour damselfish. The two parent–offspring pairs directly documented self‐recruitment at the two northern‐most sites, one of which is a long‐established marine reserve. Principal coordinates analyses of pair‐wise relatedness values further indicated that self‐recruitment was common in all sampled populations. Nevertheless, measures of genetic differentiation (FST) and results from assignment methods suggested high levels of gene flow among populations. Comparisons of heterozygosity and relatedness among samples of adults and recruits indicated spatially and temporally independent sweepstakes events, whereby only a subset of adults successfully contribute to subsequent generations. These results indicate that self‐recruitment and sweepstakes reproduction are the predominant, ecologically‐relevant processes that shape patterns of larval dispersal in this system.


Ecology | 2006

PREDATION, HABITAT COMPLEXITY, AND VARIATION IN DENSITY DEPENDENT MORTALITY OF TEMPERATE REEF FISHES

Darren W. Johnson

Density dependence in demographic rates can strongly affect the dynamics of populations. However, the mechanisms generating density dependence (e.g., predation) are also dynamic processes and may be influenced by local conditions. Understanding the manner in which local habitat features affect the occurrence and/or strength of density dependence will increase our understanding of population dynamics in heterogeneous environments. In this study I conducted two separate field experiments to investigate how local predator density and habitat complexity affect the occurrence and form of density-dependent mortality of juvenile rockfishes (Sebastes spp.). I also used yearly censuses of rockfish populations on nearshore reefs throughout central California to evaluate mortality of juvenile rockfish at large spatial scales. Manipulations of predators (juvenile bocaccio, S. paucispinus) and prey (kelp, gopher, and black-and-yellow [KGB] rockfish, Sebastes spp.) demonstrated that increasing the density of predators altered their functional response and thus altered patterns of density dependence in mortality of their prey. At low densities of predators, the number of prey consumed per predator was a decelerating function, and mortality of prey was inversely density dependent. However, at high densities of predators, the number of prey killed per predator became an accelerating response, and prey mortality was directly density dependent. Results of field experiments and large-scale surveys both indicated that the strength of density-dependent mortality may also be affected by the structural complexity of the habitat. In small-scale field experiments, increased habitat complexity increased the strength of density-dependent mortality. However, at large scales, increasing complexity resulted in a decrease in the strength of density dependence. I suggest that these differences resulted from scale-dependent changes in the predatory response that generated mortality. Whether increased habitat complexity leads to an increase or a decrease in the strength of density-dependent mortality may depend on how specific predatory responses (e.g., functional or aggregative) are altered by habitat complexity. Overall, the findings of this study suggest that rates of demographic density dependence and the resulting dynamics of local populations may largely depend upon attributes of the local habitat.


Ecology | 2007

Habitat complexity modifies post-settlement mortality and recruitment dynamics of a marine fish

Darren W. Johnson

For species that have an open population structure, local population size may be strongly influenced by a combination of propagule supply and post-settlement survival. While it is widely recognized that supply of larvae (or recruits) is variable and that variable recruitment may affect the relative contribution of pre- and post-settlement factors, less effort has been made to quantify how variation in the strength of post-settlement mortality (particularly density-dependent mortality) will affect the importance of processes that determine population size. In this study, I examined the effects of habitat complexity on mortality of blue rockfish (Sebastes mystinus) within nearshore reefs off central California. I first tested whether variation in habitat complexity (measured as three-dimensional complexity of rocky substrate) affected the magnitude of both density-independent and density-dependent mortality. I then used limitation analysis to quantify how variation in habitat complexity alters the relative influence of recruitment, density-independent mortality, and density-dependent mortality in determining local population size. Increased habitat complexity was associated with a reduction in both density-independent and density-dependent mortality. At low levels of habitat complexity, limitation analysis revealed that mortality was strong and recruitment had relatively little influence on population size. However, as habitat complexity increased, recruitment became more important. At the highest levels of habitat complexity, limitation by recruitment was substantial, although density-dependent mortality was ultimately the largest constraint on population size. In high-complexity habitats, population dynamics may strongly reflect variation in recruitment even though fluctuations may be dampened by density-dependent mortality. By affecting both density-independent and density-dependent mortality, variation in habitat complexity may result in qualitative changes in the dynamics of populations. These findings suggest that the relative importance of pre- vs. post-settlement factors may be determined by quantifiable habitat features, rather than ambient recruitment level alone. Because the magnitude of recruitment fluctuations can affect species coexistence and the persistence of populations, habitat-driven changes in population dynamics may have important consequences for both community structure and population viability.


Ecological Monographs | 2012

Density dependence and population regulation in marine fish: a large-scale, long-term field manipulation

Mark A. Hixon; Todd W. Anderson; Kevin L. Buch; Darren W. Johnson; J. Brock McLeod; Christopher D. Stallings

Do small-scale experiments showing spatial density dependence in marine fishes scale-up to temporal density dependence and regulation of relatively large local populations? If so, what are the causative mechanisms and their implications? We conducted an eight-year multigeneration study of population dynamics of bicolor damselfish (Stegastes partitus) inhabiting four large coral reefs in the Bahamas. After a four-year baseline period, it was clear that two populations naturally received very few settlement-stage larvae, so recruitment of recently settled fish was artificially enhanced at one low-settlement reef and reduced at one high-settlement reef to ensure a broad range of population sizes over which to test for regulation. Over all eight years, populations on the two naturally high-settlement reefs experienced temporal density dependence in multiple per capita demographic rates: mortality, survival to adulthood, and fecundity. These local populations also displayed components of regulation: persistenc...


Oecologia | 2008

Combined effects of condition and density on post-settlement survival and growth of a marine fish

Darren W. Johnson

For species with complex life cycles, variation in growth or condition during early life stages may affect survival in later stages or during important life-stage transitions. These effects on survival may be an important source of recruitment variability. However, survival during early stages is often density-dependent and it is unclear how the effects of early condition on recruitment compare to the effects of density alone. In this study, I investigated both the independent and interactive effects of condition and density on post-settlement survival and growth of bicolor damselfish (Stegastes partitus). In a field experiment, I crossed two levels of population density with two levels of condition (established by laboratory feeding of recent settlers) and measured growth and survivorship over a 30-day period. Low condition and high density both decreased survivorship. However, the effects of density were stronger and the effects of condition and density on survivorship were independent. In contrast, condition and density had interactive effects on growth in that density reduced growth only in the high-condition treatments. In a second experiment, I examined how condition and density affected intraspecific aggression and shelter use, two behaviors that may influence growth and survival. Shelter use was unaffected by density and condition. The rate of intraspecific chases was greater and increased more strongly with density when fish were in higher condition. Average growth rate of fish decreased with increasing rate of intraspecific chases, suggesting that the difference in aggression between condition levels was the mechanism leading to differences in density-dependent growth. These results suggest that variation in condition at settlement can significantly contribute to variation in population abundance, despite density dependence in survival. However, because behaviors that affect density-dependent growth can be altered by condition at settlement, the degree to which population biomass is regulated may depend on initial condition.


Ecology | 2006

DENSITY DEPENDENCE IN MARINE FISH POPULATIONS REVEALED AT SMALL AND LARGE SPATIAL SCALES

Darren W. Johnson

Experimental manipulation of population density has frequently been used to demonstrate demographic density dependence. However, such studies are usually small scale and typically provide evidence of spatial (within-generation) density dependence. It is often unclear whether small-scale, experimental tests of spatial density dependence will accurately describe temporal (between-generation) density dependence required for population regulation. Understanding the mechanisms generating density dependence may provide a link between spatial experiments and temporal regulation of populations. In this study, I manipulated the density of recently settled kelp rockfish (Sebastes atrovirens) in both the presence and absence of predators to test for density-dependent mortality and whether predation was the mechanism responsible. I also examined mortality of rockfish cohorts within kelp beds throughout central California to evaluate temporal (between-generation) density dependence in mortality. Experiments suggested that short-term behavioral responses of predators and/or a shortage of prey refuges caused spatial density dependence. Temporal density dependence in mortality was also detected at larger spatial scales for several species of rockfish. It is likely that short-term responses of predators generated both spatial and temporal density dependence in mortality. Spatial experiments that describe the causal mechanisms generating density dependence may therefore be valuable in describing temporal density dependence and population regulation.


Evolution | 2010

QUANTIFYING EVOLUTIONARY POTENTIAL OF MARINE FISH LARVAE: HERITABILITY, SELECTION, AND EVOLUTIONARY CONSTRAINTS

Darren W. Johnson; Mark R. Christie; Jessica Moye

For many marine fish, intense larval mortality may provide considerable opportunity for selection, yet much less is known about the evolutionary potential of larval traits. We combined field demographic studies and manipulative experiments to estimate quantitative genetic parameters for both larval size and swimming performance for a natural population of a common coral‐reef fish, the bicolor damselfish (Stegastes partitus). We also examined selection on larval size by synthesizing information from published estimates of selective mortality. We introduce a method that uses the Lande–Arnold framework for examining selection on quantitative traits to empirically reconstruct adaptive landscapes. This method allows the relationship between phenotypic value and fitness components to be described across a broad range of trait values. Our results suggested that despite strong viability selection for large larvae and moderate heritability (h2= 0.29), evolutionary responses of larvae would likely be balanced by reproductive selection favoring mothers that produce more, smaller offspring. Although long‐term evolutionary responses of larval traits may be constrained by size‐number trade‐offs, our results suggest that phenotypic variation in larval size may be an ecologically important source of variability in population dynamics through effects on larval survival and recruitment to benthic populations.


Journal of Evolutionary Biology | 2010

Ontogenetic and spatial variation in size-selective mortality of a marine fish

Darren W. Johnson; Mark A. Hixon

Although body size can affect individual fitness, ontogenetic and spatial variation in the ecology of an organism may determine the relative advantages of size and growth. During an 8‐year field study in the Bahamas, we examined selective mortality on size and growth throughout the entire reef‐associated life phase of a common coral‐reef fish, Stegastes partitus (the bicolour damselfish). On average, faster‐growing juveniles experienced greater mortality, though as adults, larger individuals had higher survival. Comparing patterns of selection observed at four separate populations revealed that greater population density was associated with stronger selection for larger adult size. Large adults may be favoured because they are superior competitors and less susceptible to gape‐limited predators. Laboratory experiments suggested that selective mortality of fast‐growing juveniles was likely because of risk‐prone foraging behaviour. These patterns suggest that variation in ecological interactions may lead to complex patterns of lifetime selection on body size.


Molecular Ecology | 2014

Spatial and temporal patterns of larval dispersal in a coral-reef fish metapopulation: evidence of variable reproductive success

Timothy J. Pusack; Mark R. Christie; Darren W. Johnson; Christopher D. Stallings; Mark A. Hixon

Many marine organisms can be transported hundreds of kilometres during their pelagic larval stage, yet little is known about spatial and temporal patterns of larval dispersal. Although traditional population‐genetic tools can be applied to infer movement of larvae on an evolutionary timescale, large effective population sizes and high rates of gene flow present serious challenges to documenting dispersal patterns over shorter, ecologically relevant, timescales. Here, we address these challenges by combining direct parentage analysis and indirect genetic analyses over a 4‐year period to document spatial and temporal patterns of larval dispersal in a common coral‐reef fish: the bicolour damselfish (Stegastes partitus). At four island locations surrounding Exuma Sound, Bahamas, including a long‐established marine reserve, we collected 3278 individuals and genotyped them at 10 microsatellite loci. Using Bayesian parentage analysis, we identified eight parent‐offspring pairs, thereby directly documenting dispersal distances ranging from 0 km (i.e., self‐recruitment) to 129 km (i.e., larval connectivity). Despite documenting substantial dispersal and gene flow between islands, we observed more self‐recruitment events than expected if the larvae were drawn from a common, well‐mixed pool (i.e., a completely open population). Additionally, we detected both spatial and temporal variation in signatures of sweepstakes and Wahlund effects. The high variance in reproductive success (i.e., ‘sweepstakes’) we observed may be influenced by seasonal mesoscale gyres present in the Exuma Sound, which play a prominent role in shaping local oceanographic patterns. This study documents the complex nature of larval dispersal in a coral‐reef fish, and highlights the importance of sampling multiple cohorts and coupling both direct and indirect genetic methods in order disentangle patterns of dispersal, gene flow and variable reproductive success.


Ecology Letters | 2014

Phenotypic variation and selective mortality as major drivers of recruitment variability in fishes.

Darren W. Johnson; Kirsten Grorud-Colvert; Su Sponaugle; Brice X. Semmens

An individuals phenotype will usually influence its probability of survival. However, when evaluating the dynamics of populations, the role of selective mortality is not always clear. Not all mortality is selective, patterns of selective mortality may vary, and it is often unknown how selective mortality compares or interacts with other sources of mortality. As a result, there is seldom a clear expectation for how changes in the phenotypic composition of populations will translate into differences in average survival. We address these issues by evaluating how selective mortality affects recruitment of fish populations. First, we provide a quantitative review of selective mortality. Our results show that most of the mortality during early life is selective, and that variation in phenotypes can have large effects on survival. Next, we describe an analytical framework that accounts for variation in selection, while also describing the amount of selective mortality experienced by different cohorts recruiting to a single population. This framework is based on reconstructing fitness surfaces from phenotypic selection measurements, and can be employed for either single or multiple traits. Finally, we show how this framework can be integrated with models of density-dependent survival to improve our understanding of recruitment variability and population dynamics.

Collaboration


Dive into the Darren W. Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica Moye

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley M. S. Tocts

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge