Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darryl Falzarano is active.

Publication


Featured researches published by Darryl Falzarano.


Nature Medicine | 2013

Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV–infected rhesus macaques

Darryl Falzarano; Emmie de Wit; Angela L. Rasmussen; Friederike Feldmann; Atsushi Okumura; Dana P. Scott; Doug Brining; Trenton Bushmaker; Cynthia Martellaro; Laura Baseler; Arndt Benecke; Michael G. Katze; Vincent J. Munster; Heinz Feldmann

The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) is of global concern: the virus has caused severe respiratory illness, with 111 confirmed cases and 52 deaths at the time of this articles publication. Therapeutic interventions have not been evaluated in vivo; thus, patient management relies exclusively on supportive care, which, given the high case-fatality rate, is not highly effective. The rhesus macaque is the only known model organism for MERS-CoV infection, developing an acute localized to widespread pneumonia with transient clinical disease that recapitulates mild to moderate human MERS-CoV cases. The combination of interferon-α2b and ribavirin was effective in reducing MERS-CoV replication in vitro; therefore, we initiated this treatment 8 h after inoculation of rhesus macaques. In contrast to untreated, infected macaques, treated animals did not develop breathing abnormalities and showed no or very mild radiographic evidence of pneumonia. Moreover, treated animals showed lower levels of systemic (serum) and local (lung) proinflammatory markers, in addition to fewer viral genome copies, distinct gene expression and less severe histopathological changes in the lungs. Taken together, these data suggest that treatment of MERS-CoV infected rhesus macaques with IFN-α2b and ribavirin reduces virus replication, moderates the host response and improves clinical outcome. As these two drugs are already used in combination in the clinic for other infections, IFN-α2b and ribavirin should be considered for the management of MERS-CoV cases.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques

Emmie de Wit; Angela L. Rasmussen; Darryl Falzarano; Trenton Bushmaker; Friederike Feldmann; Douglas Brining; Elizabeth R. Fischer; Cynthia Martellaro; Atsushi Okumura; Jean Chang; Dana P. Scott; Arndt Benecke; Michael G. Katze; Heinz Feldmann; Vincent J. Munster

Significance The Middle East respiratory syndrome coronavirus (MERS-CoV) is the latest emerged coronavirus causing severe respiratory disease with a high case fatality rate in humans. To better understand the disease caused by MERS-CoV, we developed a rhesus macaque model. Infection of rhesus macaques with MERS-CoV resulted in the rapid development of a transient pneumonia, with MERS-CoV replication largely restricted to the lower respiratory tract. This affinity of MERS-CoV for the lungs partly explains the severity of the disease observed in humans. The MERS-CoV rhesus macaque model will be instrumental in developing and testing vaccine and treatment options for an emerging viral pathogen with pandemic potential. In 2012, a novel betacoronavirus, designated Middle East respiratory syndrome coronavirus or MERS-CoV and associated with severe respiratory disease in humans, emerged in the Arabian Peninsula. To date, 108 human cases have been reported, including cases of human-to-human transmission. The availability of an animal disease model is essential for understanding pathogenesis and developing effective countermeasures. Upon a combination of intratracheal, ocular, oral, and intranasal inoculation with 7 × 106 50% tissue culture infectious dose of the MERS-CoV isolate HCoV-EMC/2012, rhesus macaques developed a transient lower respiratory tract infection. Clinical signs, virus shedding, virus replication in respiratory tissues, gene expression, and cytokine and chemokine profiles peaked early in infection and decreased over time. MERS-CoV caused a multifocal, mild to marked interstitial pneumonia, with virus replication occurring mainly in alveolar pneumocytes. This tropism of MERS-CoV for the lower respiratory tract may explain the severity of the disease observed in humans and the, up to now, limited human-to-human transmission.


PLOS Pathogens | 2014

Infection with MERS-CoV causes lethal pneumonia in the common marmoset.

Darryl Falzarano; Emmie de Wit; Friederike Feldmann; Angela L. Rasmussen; Atsushi Okumura; Xinxia Peng; Matthew J. Thomas; Elaine Haddock; Lee Nagy; Rachel LaCasse; Tingting Liu; Jiang Zhu; Jason S. McLellan; Dana P. Scott; Michael G. Katze; Heinz Feldmann; Vincent J. Munster

The availability of a robust disease model is essential for the development of countermeasures for Middle East respiratory syndrome coronavirus (MERS-CoV). While a rhesus macaque model of MERS-CoV has been established, the lack of uniform, severe disease in this model complicates the analysis of countermeasure studies. Modeling of the interaction between the MERS-CoV spike glycoprotein and its receptor dipeptidyl peptidase 4 predicted comparable interaction energies in common marmosets and humans. The suitability of the marmoset as a MERS-CoV model was tested by inoculation via combined intratracheal, intranasal, oral and ocular routes. Most of the marmosets developed a progressive severe pneumonia leading to euthanasia of some animals. Extensive lesions were evident in the lungs of all animals necropsied at different time points post inoculation. Some animals were also viremic; high viral loads were detected in the lungs of all infected animals, and total RNAseq demonstrated the induction of immune and inflammatory pathways. This is the first description of a severe, partially lethal, disease model of MERS-CoV, and as such will have a major impact on the ability to assess the efficacy of vaccines and treatment strategies as well as allowing more detailed pathogenesis studies.


Scientific Reports | 2013

Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin

Darryl Falzarano; Emmie de Wit; Cynthia Martellaro; Julie Callison; Vincent J. Munster; Heinz Feldmann

The identification of a novel β coronavirus, nCoV, as the causative agent of severe respiratory illness in humans originating in Saudi Arabia, Qatar and Jordan has raised concerns about the possibility of a coronavirus pandemic similar to that of SARS-CoV. As a definitive treatment regimen has never been thoroughly evaluated for coronavirus infections, there is an urgent need to rapidly identify potential therapeutics to address future cases of nCoV. To determine an intervention strategy, the effect of interferon-α2b and ribavirin on nCoV isolate hCoV-EMC/2012 replication in Vero and LLC-MK2 cells was evaluated. hCoV-EMC/2012 was sensitive to both interferon-α2b and ribavirin alone in Vero and LLC-MK2 cells, but only at relatively high concentrations; however, when combined, lower concentrations of interferon-α2b and ribavirin achieved comparable endpoints. Thus, a combination of interferon-α2b and ribavirin, which are already commonly used in the clinic, may be useful for patient management in the event of future nCoV infections.


Journal of Virology | 2011

A New Ebola Virus Nonstructural Glycoprotein Expressed through RNA Editing

Masfique Mehedi; Darryl Falzarano; Jochen Seebach; Xiaojie Hu; Michael Carpenter; Hans-Joachim Schnittler; Heinz Feldmann

ABSTRACT Ebola virus (EBOV), an enveloped, single-stranded, negative-sense RNA virus, causes severe hemorrhagic fever in humans and nonhuman primates. The EBOV glycoprotein (GP) gene encodes the nonstructural soluble glycoprotein (sGP) but also produces the transmembrane glycoprotein (GP1,2) through transcriptional editing. A third GP gene product, a small soluble glycoprotein (ssGP), has long been postulated to be produced also as a result of transcriptional editing. To identify and characterize the expression of this new EBOV protein, we first analyzed the relative ratio of GP gene-derived transcripts produced during infection in vitro (in Vero E6 cells or Huh7 cells) and in vivo (in mice). The average percentages of transcripts encoding sGP, GP1,2, and ssGP were approximately 70, 25, and 5%, respectively, indicating that ssGP transcripts are indeed produced via transcriptional editing. N-terminal sequence similarity with sGP, the absence of distinguishing antibodies, and the abundance of sGP made it difficult to identify ssGP through conventional methodology. Optimized 2-dimensional (2D) gel electrophoresis analyses finally verified the expression and secretion of ssGP in tissue culture during EBOV infection. Biochemical analysis of recombinant ssGP characterized this protein as a disulfide-linked homodimer that was exclusively N glycosylated. In conclusion, we have identified and characterized a new EBOV nonstructural glycoprotein, which is expressed as a result of transcriptional editing of the GP gene. While ssGP appears to share similar structural properties with sGP, it does not appear to have the same anti-inflammatory function on endothelial cells as sGP.


Expert Review of Vaccines | 2011

Progress in filovirus vaccine development: evaluating the potential for clinical use

Darryl Falzarano; Thomas W. Geisbert; Heinz Feldmann

Marburg and Ebola viruses cause severe hemorrhagic fever in humans and nonhuman primates. Currently, there are no effective treatments and no licensed vaccines; although a number of vaccine platforms have proven successful in animal models. The ideal filovirus vaccine candidate should be able to provide rapid protection following a single immunization, have the potential to work postexposure and be cross-reactive or multivalent against all Marburg virus strains and all relevant Ebola virus species and strains. Currently, there are multiple platforms that have provided prophylactic protection in nonhuman primates, including DNA, recombinant adenovirus serotype 5, recombinant human parainfluenza virus 3 and virus-like particles. In addition, a single platform, recombinant vesicular stomatitis virus, has demonstrated both prophylactic and postexposure protection in nonhuman primates. These results demonstrate that achieving a vaccine that is protective against filoviruses is possible; the challenge now is to prove its safety and efficacy in order to obtain a vaccine that is ready for human use.


The Journal of Infectious Diseases | 2011

Replication, Pathogenicity, Shedding, and Transmission of Zaire ebolavirus in Pigs

Gary P. Kobinger; Anders Leung; James Neufeld; Jason S. Richardson; Darryl Falzarano; Greg Smith; Kevin Tierney; Ami Patel; Hana Weingartl

UNLABELLED (See the editorial commentary by Bausch, on pages 179-81.) BACKGROUND Reston ebolavirus was recently detected in pigs in the Philippines. Specific antibodies were found in pig farmers, indicating exposure to the virus. This important observation raises the possibility that pigs may be susceptible to Ebola virus infection, including from other species, such as Zaire ebolavirus (ZEBOV), and can transmit to other susceptible hosts. METHODS This study investigated whether ZEBOV, a species commonly reemerging in central Africa, can replicate and induce disease in pigs and can be transmitted to naive animals. Domesticated Landrace pigs were challenged through mucosal exposure with a total of 1 ×10(6) plaque-forming units of ZEBOV and monitored for virus replication, shedding, and pathogenesis. Using similar conditions, virus transmission from infected to naive animals was evaluated in a second set of pigs. RESULTS Following mucosal exposure, pigs replicated ZEBOV to high titers (reaching 10(7) median tissue culture infective doses/mL), mainly in the respiratory tract, and developed severe lung pathology. Shedding from the oronasal mucosa was detected for up to 14 days after infection, and transmission was confirmed in all naive pigs cohabiting with inoculated animals. CONCLUSIONS These results shed light on the susceptibility of pigs to ZEBOV infection and identify an unexpected site of virus amplification and shedding linked to transmission of infectious virus.


The Journal of Infectious Diseases | 2013

A Syrian Golden Hamster Model Recapitulating Ebola Hemorrhagic Fever

Hideki Ebihara; Marko Zivcec; Donald J. Gardner; Darryl Falzarano; Rachel LaCasse; Rebecca Rosenke; Dan Long; Elaine Haddock; Elizabeth R. Fischer; Yoshihiro Kawaoka; Heinz Feldmann

Ebola hemorrhagic fever (EHF) is a severe viral infection for which no effective treatment or vaccine is currently available. While the nonhuman primate (NHP) model is used for final evaluation of experimental vaccines and therapeutic efficacy, rodent models have been widely used in ebolavirus research because of their convenience. However, the validity of rodent models has been questioned given their low predictive value for efficacy testing of vaccines and therapeutics, a result of the inconsistent manifestation of coagulopathy seen in EHF. Here, we describe a lethal Syrian hamster model of EHF using mouse-adapted Ebola virus. Infected hamsters displayed most clinical hallmarks of EHF, including severe coagulopathy and uncontrolled host immune responses. Thus, the hamster seems to be superior to the existing rodent models, offering a better tool for understanding the critical processes in pathogenesis and providing a new model for evaluating prophylactic and postexposure interventions prior to testing in NHPs.


Nature Reviews Microbiology | 2016

SARS and MERS: recent insights into emerging coronaviruses

Emmie de Wit; Darryl Falzarano; Vincent J. Munster

The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The continuing introductions of MERS-CoV from dromedary camels, the subsequent travel-related viral spread, the unprecedented nosocomial outbreaks and the high case-fatality rates highlight the need for prophylactic and therapeutic measures. Scientific advancements since the 2002–2003 severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic allowed for rapid progress in our understanding of the epidemiology and pathogenesis of MERS-CoV and the development of therapeutics. In this Review, we detail our present understanding of the transmission and pathogenesis of SARS-CoV and MERS-CoV, and discuss the current state of development of measures to combat emerging coronaviruses.


Science Translational Medicine | 2015

A synthetic consensus anti–spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates

Karuppiah Muthumani; Darryl Falzarano; Emma L. Reuschel; Colleen Tingey; Seleeke Flingai; Daniel O. Villarreal; Megan C. Wise; Ami Patel; Abdullah Izmirly; Abdulelah Aljuaid; Alecia M. Seliga; Geoff Soule; Matthew P. Morrow; Kimberly A. Kraynyak; Amir S. Khan; Dana P. Scott; Friederike Feldmann; Rachel LaCasse; Kimberly Meade-White; Atsushi Okumura; Kenneth E. Ugen; Niranjan Y. Sardesai; J. Joseph Kim; Gary P. Kobinger; Heinz Feldmann; David B. Weiner

A consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge. Emerging vaccines Public outcry drives vaccine research during outbreaks of emerging infectious disease, but public support for vaccine development dries up when the outbreaks are resolved, frequently leaving promising vaccine candidates sitting on the shelf. DNA vaccines, with their potential for rapid large-scale production, may help overcome this hurdle. Muthumani et al. report the development of a synthetic DNA vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) that induces neutralizing antibodies in mice, macaques, and camels—natural hosts of MERS-CoV. Indeed, macaques vaccinated with this DNA vaccine were protected from viral challenge. These promising results support further development of DNA vaccines for emerging infections. First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen.

Collaboration


Dive into the Darryl Falzarano's collaboration.

Top Co-Authors

Avatar

Heinz Feldmann

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Emmie de Wit

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Friederike Feldmann

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Vincent J. Munster

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dana P. Scott

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David Safronetz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joseph Prescott

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Trenton Bushmaker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrea Marzi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cynthia Martellaro

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge