Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent J. Munster is active.

Publication


Featured researches published by Vincent J. Munster.


Journal of Virology | 2005

Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls

Ron A. M. Fouchier; Vincent J. Munster; Anders Wallensten; Theo M. Bestebroer; Sander Herfst; Derek J. Smith; Gus F. Rimmelzwaan; Björn Olsen; Albert D. M. E. Osterhaus

ABSTRACT In wild aquatic birds and poultry around the world, influenza A viruses carrying 15 antigenic subtypes of hemagglutinin (HA) and 9 antigenic subtypes of neuraminidase (NA) have been described. Here we describe a previously unidentified antigenic subtype of HA (H16), detected in viruses circulating in black-headed gulls in Sweden. In agreement with established criteria for the definition of antigenic subtypes, hemagglutination inhibition assays and immunodiffusion assays failed to detect specific reactivity between H16 and the previously described subtypes H1 to H15. Genetically, H16 HA was found to be distantly related to H13 HA, a subtype also detected exclusively in shorebirds, and the amino acid composition of the putative receptor-binding site of H13 and H16 HAs was found to be distinct from that in HA subtypes circulating in ducks and geese. The H16 viruses contained NA genes that were similar to those of other Eurasian shorebirds but genetically distinct from N3 genes detected in other birds and geographical locations. The European gull viruses were further distinguishable from other influenza A viruses based on their PB2, NP, and NS genes. Gaining information on the full spectrum of avian influenza A viruses and creating reagents for their detection and identification will remain an important task for influenza surveillance, outbreak control, and animal and public health. We propose that sequence analyses of HA and NA genes of influenza A viruses be used for the rapid identification of existing and novel HA and NA subtypes.


Science | 2012

Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets

Sander Herfst; Eefje J. A. Schrauwen; Martin Linster; Salin Chutinimitkul; Emmie de Wit; Vincent J. Munster; Erin M. Sorrell; Theo M. Bestebroer; David F. Burke; Derek J. Smith; Albert D. M. E. Osterhaus; Ron A. M. Fouchier

Avian flu can acquire the capacity for airborne transmission between mammals without recombination in an intermediate host. Highly pathogenic avian influenza A/H5N1 virus can cause morbidity and mortality in humans but thus far has not acquired the ability to be transmitted by aerosol or respiratory droplet (“airborne transmission”) between humans. To address the concern that the virus could acquire this ability under natural conditions, we genetically modified A/H5N1 virus by site-directed mutagenesis and subsequent serial passage in ferrets. The genetically modified A/H5N1 virus acquired mutations during passage in ferrets, ultimately becoming airborne transmissible in ferrets. None of the recipient ferrets died after airborne infection with the mutant A/H5N1 viruses. Four amino acid substitutions in the host receptor-binding protein hemagglutinin, and one in the polymerase complex protein basic polymerase 2, were consistently present in airborne-transmitted viruses. The transmissible viruses were sensitive to the antiviral drug oseltamivir and reacted well with antisera raised against H5 influenza vaccine strains. Thus, avian A/H5N1 influenza viruses can acquire the capacity for airborne transmission between mammals without recombination in an intermediate host and therefore constitute a risk for human pandemic influenza.


PLOS Pathogens | 2007

Spatial, Temporal, and Species Variation in Prevalence of Influenza A Viruses in Wild Migratory Birds

Vincent J. Munster; Chantal Baas; Pascal Lexmond; Jonas Waldenström; Anders Wallensten; Thord Fransson; Walter Beyer; Martin Schutten; Björn Olsen; Albert D. M. E. Osterhaus; Ron A. M. Fouchier

Although extensive data exist on avian influenza in wild birds in North America, limited information is available from elsewhere, including Europe. Here, molecular diagnostic tools were employed for high-throughput surveillance of migratory birds, as an alternative to classical labor-intensive methods of virus isolation in eggs. This study included 36,809 samples from 323 bird species belonging to 18 orders, of which only 25 species of three orders were positive for influenza A virus. Information on species, locations, and timing is provided for all samples tested. Seven previously unknown host species for avian influenza virus were identified: barnacle goose, bean goose, brent goose, pink-footed goose, bewicks swan, common gull, and guillemot. Dabbling ducks were more frequently infected than other ducks and Anseriformes; this distinction was probably related to bird behavior rather than population sizes. Waders did not appear to play a role in the epidemiology of avian influenza in Europe, in contrast to the Americas. The high virus prevalence in ducks in Europe in spring as compared with North America could explain the differences in virus–host ecology between these continents. Most influenza A virus subtypes were detected in ducks, but H13 and H16 subtypes were detected primarily in gulls. Viruses of subtype H6 were more promiscuous in host range than other subtypes. Temporal and spatial variation in influenza virus prevalence in wild birds was observed, with influenza A virus prevalence varying by sampling location; this is probably related to migration patterns from northeast to southwest and a higher prevalence farther north along the flyways. We discuss the ecology and epidemiology of avian influenza A virus in wild birds in relation to host ecology and compare our results with published studies. These data are useful for designing new surveillance programs and are particularly relevant due to increased interest in avian influenza in wild birds.


Science | 2009

Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets

Vincent J. Munster; Emmie de Wit; Judith M. A. van den Brand; Sander Herfst; Eefje J. A. Schrauwen; Theo M. Bestebroer; David A. M. C. van de Vijver; Charles A. Boucher; Marion Koopmans; Thijs Kuiken; Albert D. M. E. Osterhaus; Ron A. M. Fouchier

“Swine Flu” Pathology The clinical spectrum of disease caused by the swine-origin 2009 A(H1N1) influenza virus and its transmissibility are not completely understood. Munster et al. (p. 481; published online 2 July) and Maines et al. (p. 484; published online 2 July) used ferrets, an established model for human influenza, to evaluate the pathogenesis and transmissibility of a selection of 2009 A(H1N1) virus isolates compared with representative seasonal H1N1 viruses. The results help explain the atypical symptoms seen so far, including the gastrointestinal distress and vomiting observed in many patients. Although results were variable, it seems that the 2009 A(H1N1) virus may be less efficiently transmitted by respiratory droplets in comparison to the highly transmissible seasonal H1N1 virus, suggesting that additional virus adaptation in mammals may be required before we see phenotypes observed in earlier pandemics. Animal experiments compare the dynamics and effects of the virus causing the 2009 flu outbreak to those of seasonal H1N1 flu. The swine-origin A(H1N1) influenza virus that has emerged in humans in early 2009 has raised concerns about pandemic developments. In a ferret pathogenesis and transmission model, the 2009 A(H1N1) influenza virus was found to be more pathogenic than a seasonal A(H1N1) virus, with more extensive virus replication occurring in the respiratory tract. Replication of seasonal A(H1N1) virus was confined to the nasal cavity of ferrets, but the 2009 A(H1N1) influenza virus also replicated in the trachea, bronchi, and bronchioles. Virus shedding was more abundant from the upper respiratory tract for 2009 A(H1N1) influenza virus as compared with seasonal virus, and transmission via aerosol or respiratory droplets was equally efficient. These data suggest that the 2009 A(H1N1) influenza virus has the ability to persist in the human population, potentially with more severe clinical consequences.


Emerging Infectious Diseases | 2007

Surveillance of influenza A virus in migratory waterfowl in northern Europe

Anders Wallensten; Vincent J. Munster; Neus Latorre-Margalef; Mia Brytting; Johan Elmberg; R. A. M. Fouchier; Thord Fransson; Paul D. Haemig; Malin Karlsson; Åke Lundkvist; Albert D. M. E. Osterhaus; Martin Stervander; Jonas Waldenström; Björn Olsen

Ducks may maintain influenza virus from 1 year to the next.


Emerging Infectious Diseases | 2005

Mallards and highly pathogenic avian influenza ancestral viruses, northern Europe

Vincent J. Munster; Anders Wallensten; Chantal Baas; Martin Schutten; Björn Olsen; Albert D. M. E. Osterhaus; Ron A. M. Fouchier

Surveillance studies in wild birds help generate prototypic vaccine candidates and diagnostic tests.


The New England Journal of Medicine | 2015

Molecular Evidence of Sexual Transmission of Ebola Virus

Suzanne Mate; Jeffrey R. Kugelman; Tolbert Nyenswah; Jason T. Ladner; Michael R. Wiley; Thierry Cordier-Lassalle; Athalia Christie; Gary P. Schroth; Stephen M. Gross; Gloria J. Davies-Wayne; Shivam A. Shinde; Ratnesh Murugan; Sonpon B. Sieh; Moses Badio; Lawrence S. Fakoli; Fahn Taweh; Emmie de Wit; Vincent J. Munster; James Pettitt; Karla Prieto; Ben W. Humrighouse; Ute Ströher; Joseph W. Diclaro; Lisa E. Hensley; Randal J. Schoepp; David Safronetz; Joseph N. Fair; Jens H. Kuhn; David J. Blackley; A. Scott Laney

A suspected case of sexual transmission from a male survivor of Ebola virus disease (EVD) to his female partner (the patient in this report) occurred in Liberia in March 2015. Ebola virus (EBOV) genomes assembled from blood samples from the patient and a semen sample from the survivor were consistent with direct transmission. The genomes shared three substitutions that were absent from all other Western African EBOV sequences and that were distinct from the last documented transmission chain in Liberia before this case. Combined with epidemiologic data, the genomic analysis provides evidence of sexual transmission of EBOV and evidence of the persistence of infective EBOV in semen for 179 days or more after the onset of EVD. (Funded by the Defense Threat Reduction Agency and others.).


Mbio | 2014

Middle East Respiratory Syndrome Coronavirus Infection in Dromedary Camels in Saudi Arabia

Abdulaziz N. Alagaili; Thomas Briese; Nischay Mishra; Vishal Kapoor; Stephen Sameroff; Peter D. Burbelo; E. de Wit; Vincent J. Munster; Lisa E. Hensley; Iyad S. Zalmout; Amit Kapoor; Jonathan H. Epstein; William B. Karesh; Peter Daszak; Osama B. Mohammed; W. I. Lipkin

ABSTRACT The Middle East respiratory syndrome (MERS) is proposed to be a zoonotic disease; however, the reservoir and mechanism for transmission of the causative agent, the MERS coronavirus, are unknown. Dromedary camels have been implicated through reports that some victims have been exposed to camels, camels in areas where the disease has emerged have antibodies to the virus, and viral sequences have been recovered from camels in association with outbreaks of the disease among humans. Nonetheless, whether camels mediate transmission to humans is unresolved. Here we provide evidence from a geographic and temporal survey of camels in the Kingdom of Saudi Arabia that MERS coronaviruses have been circulating in camels since at least 1992, are distributed countrywide, and can be phylogenetically classified into clades that correlate with outbreaks of the disease among humans. We found no evidence of infection in domestic sheep or domestic goats. IMPORTANCE This study was undertaken to determine the historical and current prevalence of Middle East respiratory syndrome (MERS) coronavirus infection in dromedary camels and other livestock in the Kingdom of Saudi Arabia, where the index case and the majority of cases of MERS have been reported. This study was undertaken to determine the historical and current prevalence of Middle East respiratory syndrome (MERS) coronavirus infection in dromedary camels and other livestock in the Kingdom of Saudi Arabia, where the index case and the majority of cases of MERS have been reported.


PLOS ONE | 2007

Hampered Foraging and Migratory Performance in Swans Infected with Low-Pathogenic Avian Influenza A Virus

Jan A. van Gils; Vincent J. Munster; Reinder Radersma; Daan Liefhebber; Ron A. M. Fouchier; Marcel Klaassen

It is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewicks swans (Cygnus columbianus bewickii Yarrell) naturally infected with low-pathogenic avian influenza (LPAI) A viruses of subtypes H6N2 and H6N8. Using information on geolocation data collected from Global Positioning Systems fitted to neck-collars, we show that infected swans experienced delayed migration, leaving their wintering site more than a month after uninfected animals. This was correlated with infected birds travelling shorter distances and fuelling and feeding at reduced rates. The data suggest that LPAI virus infections in wild migratory birds may have higher clinical and ecological impacts than previously recognised.


Royal Society of London. Proceedings B. Biological Sciences; 276(1659), pp 1029-1036 (2009) | 2009

Effects of influenza A virus infection on migrating mallard ducks.

Neus Latorre-Margalef; Gunnar Gunnarsson; Vincent J. Munster; R. A. M. Fouchier; Albert D. M. E. Osterhaus; Johan Elmberg; Björn Olsen; Anders Wallensten; Paul D. Haemig; Thord Fransson; Lars Brudin; Jonas Waldenström

The natural reservoir of influenza A virus is waterfowl, particularly dabbling ducks (genus Anas). Although it has long been assumed that waterfowl are asymptomatic carriers of the virus, a recent study found that low-pathogenic avian influenza (LPAI) infection in Bewicks swans (Cygnus columbianus bewickii) negatively affected stopover time, body mass and feeding behaviour. In the present study, we investigated whether LPAI infection incurred ecological or physiological costs to migratory mallards (Anas platyrhynchos) in terms of body mass loss and staging time, and whether such costs could influence the likelihood for long-distance dispersal of the avian influenza virus by individual ducks. During the autumn migrations of 2002–2007, we collected faecal samples (n=10 918) and biometric data from mallards captured and banded at Ottenby, a major staging site in a flyway connecting breeding and wintering areas of European waterfowl. Body mass was significantly lower in infected ducks than in uninfected ducks (mean difference almost 20 g over all groups), and the amount of virus shed by infected juveniles was negatively correlated with body mass. There was no general effect of infection on staging time, except for juveniles in September, in which birds that shed fewer viruses stayed shorter than birds that shed more viruses. LPAI infection did not affect speed or distance of subsequent migration. The data from recaptured individuals showed that the maximum duration of infection was on average 8.3 days (s.e. 0.5), with a mean minimum duration of virus shedding of only 3.1 days (s.e. 0.1). Shedding time decreased during the season, suggesting that mallards acquire transient immunity for LPAI infection. In conclusion, deteriorated body mass following infection was detected, but it remains to be seen whether this has more long-term fitness effects. The short virus shedding time suggests that individual mallards are less likely to spread the virus at continental or intercontinental scales.

Collaboration


Dive into the Vincent J. Munster's collaboration.

Top Co-Authors

Avatar

Emmie de Wit

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ron A. M. Fouchier

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Heinz Feldmann

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Albert D. M. E. Osterhaus

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Trenton Bushmaker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thijs Kuiken

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Dana P. Scott

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert J. Fischer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Darryl Falzarano

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge