Daryl J. Discher
SRI International
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daryl J. Discher.
Journal of Clinical Investigation | 1999
Keith A. Webster; Daryl J. Discher; Shari Kaiser; Olga M. Hernandez; Barbara Sato; Nanette H. Bishopric
Ischemia and reperfusion activate cardiac myocyte apoptosis, which may be an important feature in the progression of ischemic heart disease. The relative contributions of ischemia and reperfusion to apoptotic signal transduction have not been established. We report here that severe chronic hypoxia alone does not cause apoptosis of cardiac myocytes in culture. When rapidly contracting cardiac myocytes were exposed to chronic hypoxia, apoptosis occurred only when there was a decrease in extracellular pH ([pH](o)). Apoptosis did not occur when [pH](o) was neutralized. Addition of acidic medium from hypoxic cultures or exogenous lactic acid stimulated apoptosis in aerobic myocytes. Hypoxia-acidosis-mediated cell death was independent of p53: equivalent apoptosis occurred in cardiac myocytes isolated from wild-type and p53 knockout mice, and hypoxia caused no detectable change in p53 abundance or p53-dependent transcription. Reoxygenation of hypoxic cardiac myocytes induced apoptosis in 25-30% of the cells and was also independent of p53 by the same criteria. Finally, equivalent levels of apoptosis, as demonstrated by DNA fragmentation, were induced by ischemia-reperfusion, but not by ischemia alone, of Langendorff-perfused hearts from wild-type and p53 knockout mice. We conclude that acidosis, reoxygenation, and reperfusion, but not hypoxia (or ischemia) alone, are strong stimuli for programmed cell death that is substantially independent of p53.
Molecular and Cellular Biology | 1996
Xiaosu Wu; Nanette H. Bishopric; Daryl J. Discher; B. J. Murphy; Keith A. Webster
Redox regulation of DNA-binding proteins through the reversible oxidation of key cysteine sulfhydryl groups has been demonstrated to occur in vitro for a range of transcription factors. The direct redox regulation of DNA binding has not been described in vivo, possibly because most protein thiol groups are strongly buffered against oxidation by the highly reduced intracellular environment mediated by glutathione, thioredoxin, and associated pathways. For this reason, only accessible protein thiol groups with high thiol-disulfide oxidation potentials are likely to be responsive to intracellular redox changes. In this article, we demonstrate that zinc finger DNA-binding proteins, in particular members of the Sp-1 family, appear to contain such redox-sensitive -SH groups. These proteins displayed a higher sensitivity to redox regulation than other redox-responsive factors both in vitro and in vivo. This effect was reflected in the hyperoxidative repression of transcription from promoters with essential Sp-1 binding sites, including the simian virus 40 early region, glycolytic enzyme, and dihydrofolate reductase genes. Promoter analyses implicated the Sp-1 sites in this repression. Non-Sp-1-dependent redox-regulated genes including metallothionein and heme oxygenase were induced by the same hyperoxic stress. The studies demonstrate that cellular redox changes can directly regulate gene expression in vivo by determining the level of occupancy of strategically positioned GC-binding sites.
Circulation Research | 2000
Olga M. Hernandez; Daryl J. Discher; Nanette H. Bishopric; Keith A. Webster
Elevated levels of oxygen free radicals have been implicated in the pathways of reperfusion injury to myocardial tissue. The targets for free radicals may include specific as well as random intracellular components, and part of the cellular response is the induction of extracellularly activated and stress-activated kinases. The intermediate signals that initiate these stress responses are not known. Here we show that one of the earliest responses of cardiac myocytes to hypoxia and reoxygenation is the activation of neutral sphingomyelinase and accumulation of ceramide. Ceramide increased abruptly after reoxygenation, peaking at 10 minutes with 225+/-40% of the control level. Neutral sphingomyelinase activity was induced with similar kinetics, and both activities remained elevated for several hours. c-Jun N-terminal kinase (JNK) was also activated within the same time frame. Treatment of cardiac myocytes with extracellular ceramides also activated JNK. Pretreating cells with antioxidants quenched sphingomyelinase activation, ceramide accumulation, and JNK activation. Ceramide did not accumulate in reoxygenated nonmuscle fibroblasts, and JNK was not activated by reoxygenation in these cells. The results identify neutral sphingomyelinase activation as one of the earliest responses of cardiac myocytes to the redox stress imposed by hypoxia-reoxygenation. The results are consistent with a pathway of ceramide-mediated activation of JNK.
Circulation Research | 1994
Keith A. Webster; Daryl J. Discher; Nanette H. Bishopric
We have previously demonstrated coordinate inductions of c-fos, c-jun, jun B, and jun D in cardiac myocytes exposed to hypoxia for 2 to 4 hours. Induction of these transcripts occurred before any significant loss of intracellular ATP. In the present study, the origin of the signal(s) that regulates immediate-early gene induction was investigated by comparing the effects of hypoxia with those of the metabolic inhibitors cyanide, deoxyglucose and cyanide combined, and iodoacetic acid. Cyanide, an inhibitor of oxidative metabolism, closely mimicked the metabolic effects of hypoxia, with elimination of oxygen consumption, increased lactate production, and minimal decline in ATP levels under both conditions. Compared with hypoxia, cyanide mediated small transient inductions of fos and jun transcripts that followed a different time course. The combination of cyanide and deoxyglucose resulted in inhibition of lactate production as well as respiration, and ATP dropped rapidly to 20% of control levels. The loss of intracellular ATP was followed by fourfold inductions of c-fos and c-jun with minor changes in jun B and jun D transcript levels. Similarly, iodoacetic acid caused a major (90%) loss of ATP and irreversible cell damage as measured by leakage of creatine phosphokinase enzyme and loss of membrane arachidonic acid; ATP loss was followed by fivefold to sevenfold inductions of c-fos, c-jun and jun B transcripts.(ABSTRACT TRUNCATED AT 250 WORDS)
Journal of Molecular and Cellular Cardiology | 1995
Keith A. Webster; Daryl J. Discher; Nanetter H. Bishopric
Short periods of myocardial ischemia appear to provide protection against subsequent prolonged ischemic episodes in experimental animals and in man. This phenomenon, known as ischemic preconditioning, has not yet been characterized at the cellular or molecular levels; however, tissue hypoxia appears to be required. In this study, we used a previously developed method for hypoxic cardiac myocyte culture in order to establish a model for ischemic (or hypoxic) preconditioning in cell culture. We demonstrate that cultured neonatal rat cardiac myocytes preconditioned by 25 min of exposure to hypoxia followed by reoxygenation were protected against membrane damage for up to 6 h of prolonged severe hypoxia, as determined by arachidonic acid release and contractile recovery. In contrast, non-preconditioned myocytes exhibited significant hypoxic damage after 2-4 h. Pretreatment of cells with PMA, a tumor-promoting phorbol ester, mimicked the protective effects of hypoxic preconditioning; pretreatment with the muscarinic cholinergic agonist carbachol had no effect. Our data suggests that isolated myocytes in culture remain competent to be preconditioned by hypoxia, through a pathway that may involve the activation of protein kinase C.
Cardiovascular Research | 1997
Howard Prentice; Nanette H. Bishopric; Martin N. Hicks; Daryl J. Discher; Xiaosu Wu; Andrew A. Wylie; Keith A. Webster
OBJECTIVES Regulated expression of transferred foreign genes may be an important feature of gene therapy. Because coronary artery disease often involves intermittent myocardial ischaemia followed by periods of normal cardiac function it will probably be necessary to regulate the expression of putative therapeutic/cardioprotective genes directly in response to ischaemia-associated signals. The objectives of the current study were to develop a combination of gene regulatory components that can be used to target a product to the myocardium and limit the expression of the gene to periods of ischaemic activity. METHODS Expression plasmids were constructed containing muscle-specific promoters and hypoxia-responsive enhancer elements linked to a reporter gene. The regulation of these constructs by hypoxia or experimental ischaemia was measured following transient expression in cultured cells or after direct injection of DNA into the rabbit myocardium. RESULTS A single set of hypoxia response elements placed immediately upstream of the minimal muscle-specific alpha-myosin heavy chain promoter conferred potent positive regulation of this promoter by hypoxia in vitro and by ischaemia in vivo. Induction by ischaemia persisted for at least 4 h and returned to the baseline level within 8 h. CONCLUSIONS Hypoxia responsive regulatory elements, in combination with weak tissue-restricted promoters incorporated into an appropriate vector system may allow controlled expression of a therapeutic gene in ischaemic myocardium.
Cardiovascular Research | 1995
Ilona Bodi; Nanette H. Bishopric; Daryl J. Discher; Xiaosu Wu; Keith A. Webster
OBJECTIVES Endothelin-1 (ET-1) is a potent vasoconstrictor that is expressed in endothelial cells and in many other cells and tissues. Increased plasma levels of the peptide have been associated with ischemic heart disease, atherosclerosis, and myocardial infarction. The objectives of the current study were (1) to determine the tissue specificity for induction of the ET-1 gene by hypoxia, (2) to determine whether the hypoxia regulatory pathway is the same as that in other hypoxia regulated genes and (3) to analyze the contributions of protein kinases for basal and induced expression of ET-1. METHODS ET-1 transcript levels were measured by Northern blot and quantitative polymerase chain reaction in endothelial and non-endothelial cells following exposure to hypoxia. Regulatory steps within the pathway were identified by treating aerobic or hypoxic cultures with cycloheximide, PMA, a series of selective protein kinase inhibitors, and transition metals. The effects on ET-1 transcripts were compared with the ubiquitous hypoxia inducible pyruvate kinase gene. RESULTS The induction of ET-1 by hypoxia in vitro occurred exclusively in early passage endothelial cells. This induction was prevented by treatment with the protein synthesis inhibitor cycloheximide and was at least partially mimicked by treatment with transition metals. Induction by hypoxia was not effected by inhibitors of protein kinase C, protein kinase A, calcium-calmodulin dependent protein kinase, or cyclic GMP dependent protein kinase. The basal expression was decreased and hypoxic induction was eliminated by treating cells with tyrosine kinase-selective inhibitors. CONCLUSIONS Et-1 induction by hypoxia requires endothelial cell-specific factor(s) or steps, new protein synthesis, and may involve a haeme protein-containing pathway in oxygen sensing. A protein tyrosine kinase step is implicated for both basal and induced expression of the ET-1 gene.
Journal of Biological Chemistry | 2001
Kazuhito Yamashita; Daryl J. Discher; Jing Hu; Nanette H. Bishopric; Keith A. Webster
Biochemical and Biophysical Research Communications | 1998
Jing Hu; Daryl J. Discher; Nanette H. Bishopric; Keith A. Webster
Journal of Biological Chemistry | 1993
Keith A. Webster; Daryl J. Discher; Nanette H. Bishopric