Dave Chapman
Institute for Animal Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dave Chapman.
Vaccine | 2011
Katherine King; Dave Chapman; Jordi Argilaguet; Emma Fishbourne; Evelyne Hutet; Roland Cariolet; Geoff Hutchings; C.A.L. Oura; Christopher L. Netherton; Katy Moffat; Geraldine Taylor; Marie-Frédérique Le Potier; Linda K. Dixon; Haru-H. Takamatsu
African swine fever (ASF) is an acute haemorrhagic disease of domestic pigs for which there is currently no vaccine. We showed that experimental immunisation of pigs with the non-virulent OURT88/3 genotype I isolate from Portugal followed by the closely related virulent OURT88/1 genotype I isolate could confer protection against challenge with virulent isolates from Africa including the genotype I Benin 97/1 isolate and genotype X Uganda 1965 isolate. This immunisation strategy protected most pigs challenged with either Benin or Uganda from both disease and viraemia. Cross-protection was correlated with the ability of different ASFV isolates to stimulate immune lymphocytes from the OURT88/3 and OURT88/1 immunised pigs.
Vaccine | 2016
Ana Luisa Reis; Charles C. Abrams; Lynnette Goatley; Chris Netherton; Dave Chapman; Pedro J. Sánchez-Cordón; Linda K. Dixon
African swine fever virus (ASFV) encodes multiple copies of MGF360 and MGF530/505 gene families. These genes have been implicated in the modulation of the type I interferon (IFN) response. We investigated the effect of modulating the IFN response on virus attenuation and induction of protective immunity by deleting genes MGF360 (MGF360-10L, 11L, 12L, 13L, 14L) and MGF530/505 (MGF530/505-1R, 2R and 3R) and interrupting genes (MGF360-9L and MGF530/505-4R) in the genome of the virulent ASFV isolate Benin 97/1. Replication of this deletion mutant, BeninΔMGF, in porcine macrophages in vitro was similar to that of the parental virulent virus Benin 97/1 and the natural attenuated isolate OURT88/3, which has a similar deletion of MGF360 and 530/505 genes. Levels of IFN-β mRNA in macrophages infected with virulent Benin 97/1 isolate were barely detectable but high levels were detected in macrophages infected with OURT88/3 and intermediate levels in macrophages infected with BeninΔMGF. The data confirms that these MGF360 and MGF530/505 genes have roles in suppressing induction of type I IFN. Immunisation and boost of pigs with BeninΔMGF showed that the virus was attenuated and all pigs (5/5) were protected against challenge with a lethal dose of virulent Benin 97/1. A short transient fever was observed at day 5 or 6 post-immunisation but no other clinical signs. Following immunisation and boost with the OURT88/3 isolate 3 of 4 pigs were protected against challenge. Differences were observed in the cellular and antibody responses in pigs immunised with BeninΔMGF compared to OURT88/3. Deletion of IFN modulators is a promising route for construction of rationally attenuated ASFV candidate vaccine strains.
Antiviral Research | 2017
Pedro J. Sánchez-Cordón; Dave Chapman; Tamara Jabbar; Ana Luisa Reis; Lynnette Goatley; Christopher L. Netherton; Geraldine Taylor; Maria Montoya; Linda K. Dixon
Abstract This study compares different combinations of doses and routes of immunisation of pigs with low virulent African swine fever virus (ASFV) genotype I isolate OURT88/3, including the intramuscular and intranasal route, the latter not previously tested. Intranasal immunisations with low and moderate doses (103 and 104 TCID50) of OURT88/3 provided complete protection (100%) against challenge with virulent genotype I OURT88/1 isolate. Only mild and transient clinical reactions were observed in protected pigs. Transient moderate virus genome levels were detected in blood samples after challenge that decreased, but persisted until the end of the experiment in some animals. In contrast, pigs immunised intramuscularly with low and moderate doses (103 and 104 TCID50) displayed lower percentages of protection (50–66%), and low or undetectable levels of virus genome were detected in blood samples throughout the study. In addition, clinical courses observed in protected pigs were asymptomatic. In pigs that were not protected and developed acute ASF, an exacerbated increase of IL‐10 sometimes accompanied by an increase of IFN&ggr; was observed before euthanasia. These results showed that factors including delivery route and dose determine the outcome of immunisation with the naturally attenuated isolate OURT88/3. HighlightsProtection induced by combinations of doses and routes of immunisation of pigs with ASFV isolate OUR T88/3 is described.Intranasal immunisations with low and moderate doses provided complete protection with persistent low virus genome levels.Intramuscular immunisations with low and moderate doses provided lower protection with undetectable virus genome levels.Increased IL‐10 serum concentrations, sometimes together with increased IFN&ggr;, was observed before death in not‐protected pigs.Changes in serum concentrations of TNF&agr;, IFN&ggr;, IL‐4 and IL‐10 were not detected in none of immunised protected pigs.
Veterinary Microbiology | 2014
Pamela E Lithgow; Haru Takamatsu; Dirk Werling; Linda K. Dixon; Dave Chapman
The expression of surface markers on African swine fever virus (ASFV) infected cells was evaluated to assess their involvement in infection. Previous findings indicated CD163 expression was correlated with ASFV susceptibility. However, in this study the expression of porcine CD163 on cell lines did not increase the infection rate of these cells indicating other factors are likely to be important in determining susceptibility to infection. On adherent porcine bone marrow (pBM) cells the expression of CD45 was strongly correlated with infection. CD163 and CD203a expression correlated at intermediate levels with infection, indicating cells expressing these markers could become infected but were not preferentially infected by the virus. Most of the cells expressing MHCII were infected, indicating that they may be preferentially infected although expression of MHCII was not essential for infection and a large percentage of the infected cells were MHCII negative. CD16 showed a marked decrease in expression following infection and significantly lower levels of infected cells were shown to express CD16. Altogether these results suggest CD163 may be involved in ASFV infection but it may not be essential; the results also highlight the importance of other cell markers which requiring further investigation.
Virology | 2008
Charles C. Abrams; Dave Chapman; Rhiannon Silk; Elisabetta Liverani; Linda K. Dixon
The African swine fever virus A238L protein inhibits calcineurin phosphatase activity and activation of NF-kappaB and p300 co-activator. An 82 amino acid domain containing residues 157 to 238 at the C-terminus of A238L was expressed in E. coli and purified. This purified A238L fragment acted as a potent inhibitor of calcineurin phosphatase in vitro with an IC50 of approximately 70 nM. Two putative nuclear localisation signals were identified between residues 80 to 86 (NLS-1) and between residues 203 to 207 overlapping with the N-terminus of the calcineurin docking motif (NLS-2). Mutation of these motifs independently did not reduce nuclear localisation compared to the wild type A238L protein, whereas mutation of both motifs significantly reduced nuclear localisation of A238L. Mutation of the calcineurin docking motif resulted in a dramatic increase in the nuclear localisation of A238L provided an intact NLS was present. We propose that binding of calcineurin to A238L masks NLS-2 contributing to the cytoplasmic retention of A238L.
Vaccine | 2018
Pedro J. Sánchez-Cordón; Tamara Jabbar; Margot Berrezaie; Dave Chapman; Ana Luisa Reis; Patricia Sastre; Paloma Rueda; Lynnette Goatley; Linda K. Dixon
Highlights • Immunised pigs with BeninΔMGF were protected against parental virulent ASFV strain.• To improve safety and efficacy new doses and routes of immunisation were tested.• Intramuscular immunisation of high doses showed the best percentage of protection.• A new ELISA detected specific IgM antibodies at early stages after ASFV infection.• Early induction of IFNγ and IL-10 in vaccinated pigs probably critical to protection.
Journal of Virology | 2018
James K. Jancovich; Dave Chapman; Debra T. Hansen; Mark D. Robida; Andrey Loskutov; Felicia M. Craciunescu; Alex Y. Borovkov; Karen V. Kibler; Lynnette Goatley; Katherine King; Christopher L. Netherton; Geraldine Taylor; Bertram L. Jacobs; Kathryn Sykes; Linda K. Dixon
ABSTRACT African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia virus boost. The responses in immunized pigs to these individual antigens were compared to identify the most immunogenic. Lethal challenge of pigs immunized with a pool of antigens resulted in reduced levels of virus in blood and lymph tissues compared to those in pigs immunized with control vectors. Novel immunogenic ASFV proteins have been identified for further testing as vaccine candidates.
Veterinary Immunology and Immunopathology | 2004
Linda K. Dixon; Charles C. Abrams; Gavin C. Bowick; Lynnette Goatley; Pen C Kay-Jackson; Dave Chapman; Elisabetta Liverani; Rebecca Nix; Rhiannon Silk; Fuquan Zhang
Encyclopedia of Virology (Third Edition) | 2008
Linda K. Dixon; Dave Chapman
Archive | 2011
Pamela E Lithgow; Dave Chapman; Haru Takamatsu; Dirk Werling; Linda K. Dixon