Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dave Ellemberg is active.

Publication


Featured researches published by Dave Ellemberg.


Vision Research | 1999

Development of spatial and temporal vision during childhood

Dave Ellemberg; Terri L. Lewis; Chang Hong Liu; Daphne Maurer

Using the method of limits, we measured the development of spatial and temporal vision beginning at 4 years of age. Participants were adults, and children aged 4, 5, 6, and 7 years (n = 24 per age). Spatial vision was assessed with vertical sine-wave gratings, and temporal vision was assessed with an unpatterned luminance field sinusoidally modulated over time. Under these testing conditions, spatial contrast sensitivity at every frequency increased by at least 0.5 log units between 4 and 7 years of age, at which point it was adult-like. Grating acuity reached adult values at 6 years of age. Temporal vision was more mature: at 4 years of age temporal contrast sensitivity at higher temporal frequencies (20 and 30 Hz) and critical flicker fusion frequency were already adult-like. Sensitivity at lower temporal frequencies (5 and 10 Hz) increased by 0.25 log units after the age of 4 to reach adult levels at age 7. The results suggest that temporal vision matures more rapidly than spatial vision during childhood. Thus, spatial and temporal vision are likely mediated by different underlying neural mechanisms that mature at different rates.


Journal of Neurotrauma | 2011

Acute and Chronic Changes in Diffusivity Measures after Sports Concussion

Luke C. Henry; Julie Tremblay; Sébastien Tremblay; Agatha D. Lee; Caroline Brun; Natasha Lepore; Hugo Théoret; Dave Ellemberg; Maryse Lassonde

Despite negative neuroimaging findings in concussed athletes, studies indicate that the acceleration and deceleration of the brain after concussive impacts result in metabolic and electrophysiological alterations that may be attributable to changes in white matter resulting from biomechanical strain. In the present study we investigated the effects of sports concussion on white matter using three different diffusion tensor imaging (DTI) measures: fractional anisotropy (FA), mean diffusivity (MD), and axial diffusivity (AD). We compared a group of 10 non-concussed athletes with a group of 18 concussed athletes of the same age (mean age 22.5 years) and education (mean 16 years) using a voxel-based approach (VBA) in both the acute and chronic post-injury phases. All concussed athletes were scanned 1-6 days post-concussion and again 6 months later in a 3T Siemens Trio(™) MRI. Three 2×2 repeated-measures analyses of variance (ANOVAs) were conducted, one for each measure of DTI used in the current study. There was a main group effect of FA, which was increased in dorsal regions of both corticospinal tracts (CST) and in the corpus callosum in concussed athletes at both time points. There was a main group effect of AD in the right CST, where concussed athletes showed elevated values relative to controls at both time points. MD values were decreased in concussed athletes, in whom analyses revealed significant group differences in the CST and corpus callosum at both time points. Although the use of VBA does limit the analyses to large tracts, and it has clinical limitations with regard to individual analyses, our results nevertheless indicate that sports concussions do result in changes in diffusivity in the corpus callosum and CST that are not detected using conventional neuroimaging techniques.


Journal of The Optical Society of America A-optics Image Science and Vision | 1997

Lateral interactions in peripherally viewed texture arrays

Frances Wilkinson; Hugh R. Wilson; Dave Ellemberg

A horizontal array of vertically oriented Gabor elements was used to examine lateral masking in the near periphery (1.9 degrees-5.7 degrees eccentricity). Thresholds were assessed for detecting changes in the contrast, the spatial frequency, and the orientation of the central element within the array. The presence of surround elements induced marked threshold elevations that increased in strength as interelement spacing decreased and as retinal eccentricity increased. A model incorporating spatial summation by complex cells and reciprocal inhibition between simple and complex cells is shown to provide a quantitative fit to the data. This model suggests that complex cells analyze highly redundant textures, whereas simple cells function predominantly in the presence of isolated contours.


Journal of Neurotrauma | 2010

Neurometabolic Changes in the Acute Phase after Sports Concussions Correlate with Symptom Severity

Luke C. Henry; Sébastien Tremblay; Yvan Boulanger; Dave Ellemberg; Maryse Lassonde

Sports concussion is a major problem that affects thousands of people in North America every year. Despite negative neuroimaging findings, many athletes display neurophysiological alterations and post-concussion symptoms such as headaches and sensitivity to light and noise. It is suspected that neurometabolic changes may underlie these changes. In this study we investigated the effects of sports concussion on brain metabolism using (1)H-MR spectroscopy by comparing a group of 12 non-concussed athletes with a group of 12 concussed athletes of the same age (mean 22.5 years) and education (mean 16 years). All athletes were scanned 1-6 days post-concussion in a 3T Siemens MRI, and were administered a symptom scale to evaluate post-concussion symptomatology. Participants also completed a neuropsychological test battery to assess verbal memory, visual memory, information processing speed, and reaction time, and no group differences were detected relative to controls. Concussed athletes showed a higher number of symptoms than non-concussed athletes, and they also showed a significant decrease in glutamate in the primary motor cortex (M1), as well as significant decreases in N-acetylaspartate in the prefrontal and primary motor cortices. No changes were observed in the hippocampus. Furthermore, the metabolic changes in M1 correlated with self-reported symptom severity despite equivalent neuropsychological performance. These results confirm cortical neurometabolic changes in the acute post-concussion phase, and demonstrate for the first time a correlation between subjective self-reported symptoms and objective physical changes that may be related to increased vulnerability of the concussed brain.


Vision Research | 2002

Better perception of global motion after monocular than after binocular deprivation

Dave Ellemberg; Terri L. Lewis; Daphne Maurer; Sonia Brar; Henry P. Brent

We used random-dot kinematograms to compare the effects of early monocular versus early binocular deprivation on the development of the perception of the direction of global motion. Patients had been visually deprived by a cataract in one or both eyes from birth or later after a history of normal visual experience. The discrimination of direction of global motion was significantly impaired after early visual deprivation. Surprisingly, impairments were significantly worse after early binocular deprivation than after early monocular deprivation, and the sensitive period was very short. The unexpectedly good results after monocular deprivation suggest that the higher centers involved in the integration of global motion profit from input to the nondeprived eye. These findings suggest that beyond the primary visual cortex, competitive interactions between the eyes can give way to collaborative interactions that enable a relative sparing of some visual functions after monocular deprivation.


Journal of Neurotrauma | 2009

Advances in sport concussion assessment: from behavioral to brain imaging measures.

Dave Ellemberg; Luke C. Henry; Stephen N. Macciocchi; Kevin M. Guskiewicz; Steven P. Broglio

Given that the incidence of sports-related concussion is considered to have reached epidemic proportions, in the past 15 years we have witnessed an explosion of research in this field. The purpose of the current review is to compare the results provided by the different assessment tools used in the scientific literature in order to gain a better understanding of the sequelae and recovery following a concussion. Until recently, the bulk of the has literature focused on the immediate outcome in the hours and days post-injury as a means to plan the safest return-to-play strategy. This has led to the development of several assessment batteries that are relatively easy and rapid to administer and that allow for multiple testing sessions. The main conclusion derived from that literature is that cognitive symptoms tend to resolve within 1 week. However, accumulating evidence indicates that cognitive testing should be viewed as one of several complementary tools necessary for a comprehensive assessment of concussion. Including an objective measure of postural stability increases the sensitivity of the return-to-play decision-making process and minimizes the consequences of mitigating factors (e.g., practice effects and motivation) on neuropsychological test results. This is consistent with findings that symptom severity, neuropsychological function, and postural stability do not appear to be related or affected to the same degree after a concussion. Furthermore, recent evidence from brain imaging, including event-related potentials and functional and metabolic imaging, suggest abnormalities in the electrical responses, metabolic balance, and oxygen consumption of neurons that persist several months after the incident. We explain this apparent discrepancy in recovery by suggesting an initial and rapid phase of functional recovery driven by compensatory mechanisms and brain plasticity, which is followed by a prolonged neuronal recovery period during which subtle deficits in brain functioning are present but not apparent to standard clinical assessment tools.


BMC Neurology | 2011

Metabolic changes in concussed American football players during the acute and chronic post-injury phases

Luke C. Henry; Sebasatien Tremblay; Suzanne Leclerc; Abdesselam Khiat; Yvan Boulanger; Dave Ellemberg; Maryse Lassonde

BackgroundDespite negative neuroimaging findings many athletes display neurophysiological alterations and post-concussion symptoms that may be attributable to neurometabolic alterations.MethodsThe present study investigated the effects of sports concussion on brain metabolism using 1H-MR Spectroscopy by comparing a group of 10 non-concussed athletes with a group of 10 concussed athletes of the same age (mean: 22.5 years) and education (mean: 16 years) within both the acute and chronic post-injury phases. All athletes were scanned 1-6 days post-concussion and again 6-months later in a 3T Siemens MRI.ResultsConcussed athletes demonstrated neurometabolic impairment in prefrontal and motor (M1) cortices in the acute phase where NAA:Cr levels remained depressed relative to controls. There was some recovery observed in the chronic phase where Glu:Cr levels returned to those of control athletes; however, there was a pathological increase of m-I:Cr levels in M1 that was only present in the chronic phase.ConclusionsThese results confirm cortical neurometabolic changes in the acute post-concussion phase as well as recovery and continued metabolic abnormalities in the chronic phase. The results indicate that complex pathophysiological processes differ depending on the post-injury phase and the neurometabolite in question.


Brain Injury | 2012

Neuropsychological and neurophysiological assessment of sport concussion in children, adolescents and adults

Annie Baillargeon; Maryse Lassonde; Suzanne Leclerc; Dave Ellemberg

Objective: To determine whether age differences exist with respect to neuropsychological and electrophysiological functioning following a sport concussion. Design: Cross-sectional study. Participants: Ninety-six athletes (9–12 years, n = 32; 13–16 years, n = 34; adults, n = 30), half of whom had a sport concussion. Intervention: Cognitive functioning was assessed using standardized neuropsychological tests and event-related potentials elicited by a visual 3-stimulus oddball paradigm. The PCSS was used to assess symptoms experienced at the time of injury. Main outcome measurements: Neuropsychological assessment with an adaptation of the battery used by the National Hockey League. Latencies and amplitudes of the P3a and P3b were analysed in terms of group (concussed vs. control) and age. Results: All concussed athletes had significantly lower amplitude for the P3b component compared to their non-injured teammates (p > 0.05). Adolescents also showed persistent deficits in working memory (p > 0.05). Conclusions: These data suggest persistent neurophysiological deficits that are present at least 6 months following a concussion. Moreover, adolescents are more sensitive to the consequences of concussions than are children or adults.


Vision Research | 2002

Sensitivity to global form in glass patterns after early visual deprivation in humans.

Terri L. Lewis; Dave Ellemberg; Daphne Maurer; Frances Wilkinson; Hugh R. Wilson; Melanie Dirks; Henry P. Brent

To compare the effects of early monocular versus early binocular deprivation on the perception of global form, we assessed sensitivity to global concentric structure in Glass patterns with varying ratios of paired signal dots to noise dots. Children who had been deprived by dense congenital cataracts in one (n=10) or both (n=8) eyes performed significantly worse than comparably aged children without eye problems. Consistent with previous results on sensitivity to global motion [Vision Research 42 (2002) 169], thresholds in the deprived eyes were significantly better after monocular deprivation than after binocular deprivation of comparable duration, even when there had been little patching of the nondeprived eye after monocular deprivation. Together, the results indicate that the competitive interactions between a deprived and nondeprived eye evident in the primary visual cortex can co-occur with complementary interactions in extrastriate cortex that enable a relative sparing of some visual functions after early monocular deprivation.


Vision Research | 1999

Spatial and temporal vision in patients treated for bilateral congenital cataracts

Dave Ellemberg; Terri L. Lewis; Daphne Maurer; Chang Hong Lui; Henry P. Brent

Using the method of limits, we measured spatial and temporal vision in 13 children who had been deprived of patterned visual input during infancy until they were treated for dense central cataracts in both eyes. Spatial vision was assessed with vertical sine-wave gratings, and temporal vision was assessed with an unpatterned luminance field sinusoidally modulated over time. Under these testing conditions, spatial contrast sensitivity at low and medium spatial frequencies (0.33-2 c deg-1) was within normal limits, but sensitivity at higher spatial frequencies and grating acuity were reduced on average by 1.3 and 0.5 log units, respectively. Temporal vision was affected less severely, with losses in sensitivity only for low temporal frequencies (5 and 10 Hz), which averaged 0.4 log units. Thus, spatial and temporal vision are likely mediated by different neural mechanisms, that are differentially affected by deprivation.

Collaboration


Dive into the Dave Ellemberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franco Lepore

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge