Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Barbie is active.

Publication


Featured researches published by David A. Barbie.


Nature | 2009

Systematic RNA interference reveals that oncogenic KRAS -driven cancers require TBK1

David A. Barbie; Pablo Tamayo; Jesse S. Boehm; So Young Kim; Susan E. Moody; Ian F. Dunn; Anna C. Schinzel; Peter Sandy; Etienne Meylan; Claudia Scholl; Stefan Fröhling; Edmond M. Chan; Martin L. Sos; Kathrin Michel; Craig H. Mermel; Serena J. Silver; Barbara A. Weir; Jan H. Reiling; Qing Sheng; Piyush B. Gupta; Raymond C. Wadlow; Hanh Le; Ben S. Wittner; Sridhar Ramaswamy; David M. Livingston; David M. Sabatini; Matthew Meyerson; Roman K. Thomas; Eric S. Lander; Jill P. Mesirov

The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IκB kinase TBK1 was selectively essential in cells that contain mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-κB anti-apoptotic signals involving c-Rel and BCL-XL (also known as BCL2L1) that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations indicate that TBK1 and NF-κB signalling are essential in KRAS mutant tumours, and establish a general approach for the rational identification of co-dependent pathways in cancer.


Cancer Cell | 2009

AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer

Krishna Vasudevan; David A. Barbie; Michael A. Davies; Rosalia Rabinovsky; Chontelle McNear; Jessica Kim; Bryan T. Hennessy; Hsiuyi Tseng; Panisa Pochanard; So Young Kim; Ian F. Dunn; Anna C. Schinzel; Peter Sandy; Qing Sheng; Piyush B. Gupta; Jesse S. Boehm; Jan H. Reiling; Serena J. Silver; Yiling Lu; Katherine Stemke-Hale; Bhaskar Dutta; Corwin Joy; Aysegul A. Sahin; Ana M. Gonzalez-Angulo; Ana Lluch; Lucia E. Rameh; Tyler Jacks; David E. Root; Eric S. Lander; Gordon B. Mills

Dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway occurs frequently in human cancer. PTEN tumor suppressor or PIK3CA oncogene mutations both direct PI3K-dependent tumorigenesis largely through activation of the AKT/PKB kinase. However, here we show through phosphoprotein profiling and functional genomic studies that many PIK3CA mutant cancer cell lines and human breast tumors exhibit only minimal AKT activation and a diminished reliance on AKT for anchorage-independent growth. Instead, these cells retain robust PDK1 activation and membrane localization and exhibit dependency on the PDK1 substrate SGK3. SGK3 undergoes PI3K- and PDK1-dependent activation in PIK3CA mutant cancer cells. Thus, PI3K may promote cancer through both AKT-dependent and AKT-independent mechanisms. Knowledge of differential PI3K/PDK1 signaling could inform rational therapeutics in cancers harboring PIK3CA mutations.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Highly parallel identification of essential genes in cancer cells

Biao Luo; Hiu Wing Cheung; Aravind Subramanian; Tanaz Sharifnia; Michael Okamoto; Xiaoping Yang; Greg Hinkle; Jesse S. Boehm; Rameen Beroukhim; Barbara A. Weir; Craig H. Mermel; David A. Barbie; Tarif Awad; Xiaochuan Zhou; Tuyen Nguyen; Bruno Piqani; Cheng Li; Todd R. Golub; Matthew Meyerson; Nir Hacohen; William C. Hahn; Eric S. Lander; David M. Sabatini; David E. Root

More complete knowledge of the molecular mechanisms underlying cancer will improve prevention, diagnosis and treatment. Efforts such as The Cancer Genome Atlas are systematically characterizing the structural basis of cancer, by identifying the genomic mutations associated with each cancer type. A powerful complementary approach is to systematically characterize the functional basis of cancer, by identifying the genes essential for growth and related phenotypes in different cancer cells. Such information would be particularly valuable for identifying potential drug targets. Here, we report the development of an efficient, robust approach to perform genome-scale pooled shRNA screens for both positive and negative selection and its application to systematically identify cell essential genes in 12 cancer cell lines. By integrating these functional data with comprehensive genetic analyses of primary human tumors, we identified known and putative oncogenes such as EGFR, KRAS, MYC, BCR-ABL, MYB, CRKL, and CDK4 that are essential for cancer cell proliferation and also altered in human cancers. We further used this approach to identify genes involved in the response of cancer cells to tumoricidal agents and found 4 genes required for the response of CML cells to imatinib treatment: PTPN1, NF1, SMARCB1, and SMARCE1, and 5 regulators of the response to FAS activation, FAS, FADD, CASP8, ARID1A and CBX1. Broad application of this highly parallel genetic screening strategy will not only facilitate the rapid identification of genes that drive the malignant state and its response to therapeutics but will also enable the discovery of genes that participate in any biological process.


Molecular and Cellular Biology | 1996

Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent.

Vasily V. Ogryzko; T H Hirai; V R Russanova; David A. Barbie; Bruce H. Howard

Human diploid fibroblasts (HDF) complete a limited number of cell divisions before entering a growth arrest state that is termed replicative senescence. Two histone deacetylase inhibitors, sodium butyrate and trichostatin A, dramatically reduce the HDF proliferative life span in a manner that is dependent on one or more cell doublings in the presence of these agents. Cells arrested and subsequently released from histone deacetylase inhibitors display markers of senescence and exhibit a persistent G1 block but remain competent to initiate a round of DNA synthesis in response to simian virus 40 T antigen. Average telomere length in prematurely arrested cells is greater than in senescent cells, reflecting a lower number of population doublings completed by the former. Taken together, these results support the view that one component of HDF senescence mimics a cell cycle-dependent drift in differentiation state and that propagation of HDF in histone deacetylase inhibitors accentuates this component.


Molecular and Cellular Biology | 2001

RBP1 Recruits the mSIN3-Histone Deacetylase Complex to the Pocket of Retinoblastoma Tumor Suppressor Family Proteins Found in Limited Discrete Regions of the Nucleus at Growth Arrest

Albert Lai; Brian K. Kennedy; David A. Barbie; Nicholas R. Bertos; Xiang Jiao Yang; Marie-Christine Theberge; Shih-Chang Tsai; Edward Seto; Yi Zhang; Andrei Kuzmichev; William S. Lane; Danny Reinberg; Ed Harlow; Philip E. Branton

ABSTRACT Retinoblastoma (RB) tumor suppressor family pocket proteins induce cell cycle arrest by repressing transcription of E2F-regulated genes through both histone deacetylase (HDAC)-dependent and -independent mechanisms. In this study we have identified a stable complex that accounts for the recruitment of both repression activities to the pocket. One component of this complex is RBP1, a known pocket-binding protein that exhibits both HDAC-dependent and -independent repression functions. RB family proteins were shown to associate via the pocket with previously identified mSIN3-SAP30-HDAC complexes containing exclusively class I HDACs. Such enzymes do not interact directly with RB family proteins but rather utilize RBP1 to target the pocket. This mechanism was shown to account for the majority of RB-associated HDAC activity. We also show that in quiescent normal human cells this entire RBP1-mSIN3-SAP30-HDAC complex colocalizes with both RB family members and E2F4 in a limited number of discrete regions of the nucleus that in other studies have been shown to represent the initial origins of DNA replication following growth stimulation. These results suggest that RB family members, at least in part, drive exit from the cell cycle by recruitment of this HDAC complex via RBP1 to repress transcription from E2F-dependent promoters and possibly to alter chromatin structure at DNA origins.


Journal of Biological Chemistry | 2000

Müllerian Inhibiting Substance Inhibits Ovarian Cell Growth through an Rb-independent Mechanism

Thanh U. Ha; Dorry L. Segev; David A. Barbie; Peter T. Masiakos; Trinh T. Tran; David Dombkowski; Michelle Glander; Trent R. Clarke; Hans K. Lorenzo; Patricia K. Donahoe; Shyamala Maheswaran

Müllerian inhibiting substance (MIS), a transforming growth factor-β family member, causes regression of the Müllerian duct in male embryos. MIS overexpression in transgenic mice ablates the ovary, and MIS inhibits the growth of ovarian cancer cell lines in vitro, suggesting a key role for this hormone in postnatal development of the ovary. This report describes a mechanism for MIS-mediated growth inhibition in both a human epithelial ovarian cancer cell line and a cell line derived from normal ovarian surface epithelium, which is the origin of human epithelial ovarian cancers. MIS-treated cells accumulated in the G1phase of the cell cycle and subsequently underwent apoptosis. MIS up-regulated the cyclin-dependent kinase inhibitor p16 through an MIS type II receptor-mediated mechanism and inhibited growth in the absence of detectable or inactive Rb protein. Prolonged treatment with MIS down-regulated the Rb-related protein p130 and increased the Rb family-regulated transcription factor E2F1, overexpression of which inhibited growth. These findings demonstrate that p16 is required for MIS-mediated growth inhibition in ovarian epithelial cells and tumor cells and suggest that up-regulation of E2F1 also plays a role in this process.


Cancer Discovery | 2014

Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit

Zehua Zhu; Amir R. Aref; Travis J. Cohoon; Thanh U. Barbie; Yu Imamura; Shenghong Yang; Susan E. Moody; Rhine R. Shen; Anna C. Schinzel; Tran C. Thai; Jacob B. Reibel; Pablo Tamayo; Jason T. Godfrey; Zhi Rong Qian; Asher N. Page; Karolina Maciag; Edmond M. Chan; Whitney Silkworth; Mary T. Labowsky; Lior Rozhansky; Jill P. Mesirov; William E. Gillanders; Shuji Ogino; Nir Hacohen; Suzanne Gaudet; Michael J. Eck; Jeffrey A. Engelman; Ryan B. Corcoran; Kwok-Kin Wong; William C. Hahn

Although the roles of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling in KRAS-driven tumorigenesis are well established, KRAS activates additional pathways required for tumor maintenance, the inhibition of which are likely to be necessary for effective KRAS-directed therapy. Here, we show that the IκB kinase (IKK)-related kinases Tank-binding kinase-1 (TBK1) and IKKε promote KRAS-driven tumorigenesis by regulating autocrine CCL5 and interleukin (IL)-6 and identify CYT387 as a potent JAK/TBK1/IKKε inhibitor. CYT387 treatment ablates RAS-associated cytokine signaling and impairs Kras-driven murine lung cancer growth. Combined CYT387 treatment and MAPK pathway inhibition induces regression of aggressive murine lung adenocarcinomas driven by Kras mutation and p53 loss. These observations reveal that TBK1/IKKε promote tumor survival by activating CCL5 and IL-6 and identify concurrent inhibition of TBK1/IKKε, Janus-activated kinase (JAK), and MEK signaling as an effective approach to inhibit the actions of oncogenic KRAS.


Cell Reports | 2013

Structure and Ubiquitination-Dependent Activation of TANK-Binding Kinase 1

Daqi Tu; Zehua Zhu; Alicia Y. Zhou; Cai-Hong Yun; Kyung Eun Lee; Angela V. Toms; Yiqun Li; Gavin P. Dunn; Edmond M. Chan; Tran C. Thai; Shenghong Yang; Scott B. Ficarro; Jarrod A. Marto; Hyesung Jeon; William C. Hahn; David A. Barbie; Michael J. Eck

Upon stimulation by pathogen-associated inflammatory signals, TANK-binding kinase 1 (TBK1) induces type I interferon expression and modulates nuclear factor κB (NF-κB) signaling. Here, we describe the 2.4 Å-resolution crystal structure of nearly full-length TBK1 in complex with specific inhibitors. The structure reveals a dimeric assembly created by an extensive network of interactions among the kinase, ubiquitin-like, and scaffold/dimerization domains. An intact TBK1 dimer undergoes K63-linked polyubiquitination on lysines 30 and 401, and these modifications are required for TBK1 activity. The ubiquitination sites and dimer contacts are conserved in the close homolog inhibitor of κB kinase ε (IKKε) but not in IKKβ, a canonical IKK that assembles in an unrelated manner. The multidomain architecture of TBK1 provides a structural platform for integrating ubiquitination with kinase activation and IRF3 phosphorylation. The structure of TBK1 will facilitate studies of the atypical IKKs in normal and disease physiology and further the development of more specific inhibitors that may be useful as anticancer or anti-inflammatory agents.


Cancer Research | 2016

STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment

Shohei Koyama; Esra A. Akbay; Yvonne Y. Li; Amir R. Aref; Ferdinandos Skoulidis; Grit S. Herter-Sprie; Kevin A. Buczkowski; Yan Liu; Mark M. Awad; Warren Denning; Lixia Diao; Jing Wang; Edwin R. Parra-Cuentas; Ignacio I. Wistuba; Margaret Soucheray; Tran C. Thai; Hajime Asahina; Shunsuke Kitajima; Abigail Altabef; Jillian D. Cavanaugh; Kevin Rhee; Peng Gao; Haikuo Zhang; Peter E. Fecci; Takeshi Shimamura; Matthew D. Hellmann; John V. Heymach; F. Stephen Hodi; Gordon J. Freeman; David A. Barbie

STK11/LKB1 is among the most commonly inactivated tumor suppressors in non-small cell lung cancer (NSCLC), especially in tumors harboring KRAS mutations. Many oncogenes promote immune escape, undermining the effectiveness of immunotherapies, but it is unclear whether the inactivation of tumor suppressor genes, such as STK11/LKB1, exerts similar effects. In this study, we investigated the consequences of STK11/LKB1 loss on the immune microenvironment in a mouse model of KRAS-driven NSCLC. Genetic ablation of STK11/LKB1 resulted in accumulation of neutrophils with T-cell-suppressive effects, along with a corresponding increase in the expression of T-cell exhaustion markers and tumor-promoting cytokines. The number of tumor-infiltrating lymphocytes was also reduced in LKB1-deficient mouse and human tumors. Furthermore, STK11/LKB1-inactivating mutations were associated with reduced expression of PD-1 ligand PD-L1 in mouse and patient tumors as well as in tumor-derived cell lines. Consistent with these results, PD-1-targeting antibodies were ineffective against Lkb1-deficient tumors. In contrast, treating Lkb1-deficient mice with an IL6-neutralizing antibody or a neutrophil-depleting antibody yielded therapeutic benefits associated with reduced neutrophil accumulation and proinflammatory cytokine expression. Our findings illustrate how tumor suppressor mutations can modulate the immune milieu of the tumor microenvironment, and they offer specific implications for addressing STK11/LKB1-mutated tumors with PD-1-targeting antibody therapies.


Blood | 2014

Requirement for CDK6 in MLL-rearranged acute myeloid leukemia

Theresa Placke; Katrin Faber; Atsushi Nonami; Sarah Putwain; Helmut R. Salih; Florian H. Heidel; Alwin Krämer; David E. Root; David A. Barbie; Andrei V. Krivtsov; Scott A. Armstrong; William C. Hahn; Brian J. P. Huntly; Stephen M. Sykes; Michael D. Milsom; Claudia Scholl; Stefan Fröhling

Chromosomal rearrangements involving the H3K4 methyltransferase mixed-lineage leukemia (MLL) trigger aberrant gene expression in hematopoietic progenitors and give rise to an aggressive subtype of acute myeloid leukemia (AML). Insights into MLL fusion-mediated leukemogenesis have not yet translated into better therapies because MLL is difficult to target directly, and the identity of the genes downstream of MLL whose altered transcription mediates leukemic transformation are poorly annotated. We used a functional genetic approach to uncover that AML cells driven by MLL-AF9 are exceptionally reliant on the cell-cycle regulator CDK6, but not its functional homolog CDK4, and that the preferential growth inhibition induced by CDK6 depletion is mediated through enhanced myeloid differentiation. CDK6 essentiality is also evident in AML cells harboring alternate MLL fusions and a mouse model of MLL-AF9-driven leukemia and can be ascribed to transcriptional activation of CDK6 by mutant MLL. Importantly, the context-dependent effects of lowering CDK6 expression are closely phenocopied by a small-molecule CDK6 inhibitor currently in clinical development. These data identify CDK6 as critical effector of MLL fusions in leukemogenesis that might be targeted to overcome the differentiation block associated with MLL-rearranged AML, and underscore that cell-cycle regulators may have distinct, noncanonical, and nonredundant functions in different contexts.

Collaboration


Dive into the David A. Barbie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo Tamayo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge