Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna C. Schinzel is active.

Publication


Featured researches published by Anna C. Schinzel.


Cell | 2011

BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc

Jake Delmore; Ghayas C Issa; Madeleine E. Lemieux; Peter B. Rahl; Junwei Shi; Hannah M. Jacobs; Efstathios Kastritis; Timothy Gilpatrick; Ronald M. Paranal; Jun Qi; Marta Chesi; Anna C. Schinzel; Michael R. McKeown; Timothy P. Heffernan; Christopher R. Vakoc; P. Leif Bergsagel; Irene M. Ghobrial; Paul G. Richardson; Richard A. Young; William C. Hahn; Kenneth C. Anderson; Andrew L. Kung; James E. Bradner; Constantine S. Mitsiades

MYC contributes to the pathogenesis of a majority of human cancers, yet strategies to modulate the function of the c-Myc oncoprotein do not exist. Toward this objective, we have targeted MYC transcription by interfering with chromatin-dependent signal transduction to RNA polymerase, specifically by inhibiting the acetyl-lysine recognition domains (bromodomains) of putative coactivator proteins implicated in transcriptional initiation and elongation. Using a selective small-molecule bromodomain inhibitor, JQ1, we identify BET bromodomain proteins as regulatory factors for c-Myc. BET inhibition by JQ1 downregulates MYC transcription, followed by genome-wide downregulation of Myc-dependent target genes. In experimental models of multiple myeloma, a Myc-dependent hematologic malignancy, JQ1 produces a potent antiproliferative effect associated with cell-cycle arrest and cellular senescence. Efficacy of JQ1 in three murine models of multiple myeloma establishes the therapeutic rationale for BET bromodomain inhibition in this disease and other malignancies characterized by pathologic activation of c-Myc.


Nature | 2011

Initial genome sequencing and analysis of multiple myeloma

Michael Chapman; Michael S. Lawrence; Jonathan J. Keats; Kristian Cibulskis; Carrie Sougnez; Anna C. Schinzel; Christina L. Harview; Jean Philippe Brunet; Gregory J. Ahmann; Mazhar Adli; Kenneth C. Anderson; Kristin Ardlie; Daniel Auclair; Angela Baker; P. Leif Bergsagel; Bradley E. Bernstein; Yotam Drier; Rafael Fonseca; Stacey B. Gabriel; Craig C. Hofmeister; Sundar Jagannath; Andrzej J. Jakubowiak; Amrita Krishnan; Joan Levy; Ted Liefeld; Sagar Lonial; Scott Mahan; Bunmi Mfuko; Stefano Monti; Louise M. Perkins

Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signalling was indicated by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.


Nature | 2009

Systematic RNA interference reveals that oncogenic KRAS -driven cancers require TBK1

David A. Barbie; Pablo Tamayo; Jesse S. Boehm; So Young Kim; Susan E. Moody; Ian F. Dunn; Anna C. Schinzel; Peter Sandy; Etienne Meylan; Claudia Scholl; Stefan Fröhling; Edmond M. Chan; Martin L. Sos; Kathrin Michel; Craig H. Mermel; Serena J. Silver; Barbara A. Weir; Jan H. Reiling; Qing Sheng; Piyush B. Gupta; Raymond C. Wadlow; Hanh Le; Ben S. Wittner; Sridhar Ramaswamy; David M. Livingston; David M. Sabatini; Matthew Meyerson; Roman K. Thomas; Eric S. Lander; Jill P. Mesirov

The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IκB kinase TBK1 was selectively essential in cells that contain mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-κB anti-apoptotic signals involving c-Rel and BCL-XL (also known as BCL2L1) that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations indicate that TBK1 and NF-κB signalling are essential in KRAS mutant tumours, and establish a general approach for the rational identification of co-dependent pathways in cancer.


Cancer Cell | 2009

AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer

Krishna Vasudevan; David A. Barbie; Michael A. Davies; Rosalia Rabinovsky; Chontelle McNear; Jessica Kim; Bryan T. Hennessy; Hsiuyi Tseng; Panisa Pochanard; So Young Kim; Ian F. Dunn; Anna C. Schinzel; Peter Sandy; Qing Sheng; Piyush B. Gupta; Jesse S. Boehm; Jan H. Reiling; Serena J. Silver; Yiling Lu; Katherine Stemke-Hale; Bhaskar Dutta; Corwin Joy; Aysegul A. Sahin; Ana M. Gonzalez-Angulo; Ana Lluch; Lucia E. Rameh; Tyler Jacks; David E. Root; Eric S. Lander; Gordon B. Mills

Dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway occurs frequently in human cancer. PTEN tumor suppressor or PIK3CA oncogene mutations both direct PI3K-dependent tumorigenesis largely through activation of the AKT/PKB kinase. However, here we show through phosphoprotein profiling and functional genomic studies that many PIK3CA mutant cancer cell lines and human breast tumors exhibit only minimal AKT activation and a diminished reliance on AKT for anchorage-independent growth. Instead, these cells retain robust PDK1 activation and membrane localization and exhibit dependency on the PDK1 substrate SGK3. SGK3 undergoes PI3K- and PDK1-dependent activation in PIK3CA mutant cancer cells. Thus, PI3K may promote cancer through both AKT-dependent and AKT-independent mechanisms. Knowledge of differential PI3K/PDK1 signaling could inform rational therapeutics in cancers harboring PIK3CA mutations.


Cell | 2014

KRAS and YAP1 converge to regulate EMT and tumor survival

Diane D. Shao; Wen Xue; Elsa Beyer Krall; Arjun Bhutkar; Federica Piccioni; Xiaoxing Wang; Anna C. Schinzel; Sabina Sood; Joseph Rosenbluh; Jong W. Kim; Yaara Zwang; Thomas M. Roberts; David E. Root; Tyler Jacks; William C. Hahn

Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival upon KRAS suppression. In particular, the transcriptional coactivator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling.


Cancer Cell | 2010

An activated ErbB3/NRG1 autocrine loop supports in vivo proliferation in ovarian cancer cells.

Qing Sheng; Xinggang Liu; Eleanor M. Fleming; Karen Yuan; Huiying Piao; Jinyun Chen; Zeinab Moustafa; Roman K. Thomas; Heidi Greulich; Anna C. Schinzel; Sara Zaghlul; David Bryant Batt; Seth Ettenberg; Matthew Meyerson; Birgit Schoeberl; Andrew L. Kung; William C. Hahn; Ronny Drapkin; David M. Livingston; Joyce Liu

Ovarian cancer is a leading cause of death from gynecologic malignancies. Treatment for advanced-stage disease remains limited and, to date, targeted therapies have been incompletely explored. By systematically suppressing each human tyrosine kinase in ovarian cancer cell lines by RNAi, we found that an autocrine signal-transducing loop involving NRG1 and activated ErbB3 operates in a subset of primary ovarian cancers and ovarian cancer cell lines. Perturbation of this circuit with ErbB3-directed RNAi decreased cell growth in three-dimensional culture and resulted in decreased disease progression and prolonged survival in a xenograft mouse model of ovarian cancer. Furthermore, a monoclonal ErbB3-directed antibody (MM-121) also significantly inhibited tumor growth in vivo. These findings identify ErbB3 as a potential therapeutic target in ovarian cancer.


Journal of Cell Biology | 2004

Conformational control of Bax localization and apoptotic activity by Pro168

Anna C. Schinzel; Thomas Kaufmann; Martin Schuler; Jorge Martinalbo; David Grubb; Christoph Borner

In healthy cells, Bax resides inactive in the cytosol because its COOH-terminal transmembrane region (TMB) is tucked into a hydrophobic pocket. During apoptosis, Bax undergoes a conformational change involving NH2-terminal exposure and translocates to mitochondria to release apoptogenic factors. How this process is regulated remains unknown. We show that the TMB of Bax is both necessary and sufficient for mitochondrial targeting. However, its availability for targeting depends on Pro168 located within the preceding loop region. Pro168 mutants of Bax lack apoptotic activity, cannot rescue the apoptosis-resistant phenotype of Bax/Bak double knockout cells, and are retained in the cytosol even in response to apoptotic stimuli. Moreover, the mutants have their NH2 termini exposed. We propose that Pro168 links the NH2 and the COOH terminus of Bax and is required for COOH-terminal release and mitochondrial targeting once this link is broken.


Cancer Cell | 2009

Proteomic and genetic approaches identify Syk as an AML target.

Cynthia K. Hahn; Jacob E. Berchuck; Kenneth N. Ross; Rose M. Kakoza; Karl R. Clauser; Anna C. Schinzel; Linda Ross; Ilene Galinsky; Tina N. Davis; Serena J. Silver; David E. Root; Richard Stone; Daniel J. DeAngelo; Martin Carroll; William C. Hahn; Steven A. Carr; Todd R. Golub; Andrew L. Kung; Kimberly Stegmaier

Cell-based screening can facilitate the rapid identification of compounds inducing complex cellular phenotypes. Advancing a compound toward the clinic, however, generally requires the identification of precise mechanisms of action. We previously found that epidermal growth factor receptor (EGFR) inhibitors induce acute myeloid leukemia (AML) differentiation via a non-EGFR mechanism. In this report, we integrated proteomic and RNAi-based strategies to identify their off-target, anti-AML mechanism. These orthogonal approaches identified Syk as a target in AML. Genetic and pharmacological inactivation of Syk with a drug in clinical trial for other indications promoted differentiation of AML cells and attenuated leukemia growth in vivo. These results demonstrate the power of integrating diverse chemical, proteomic, and genomic screening approaches to identify therapeutic strategies for cancer.


Cancer Discovery | 2014

Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit

Zehua Zhu; Amir R. Aref; Travis J. Cohoon; Thanh U. Barbie; Yu Imamura; Shenghong Yang; Susan E. Moody; Rhine R. Shen; Anna C. Schinzel; Tran C. Thai; Jacob B. Reibel; Pablo Tamayo; Jason T. Godfrey; Zhi Rong Qian; Asher N. Page; Karolina Maciag; Edmond M. Chan; Whitney Silkworth; Mary T. Labowsky; Lior Rozhansky; Jill P. Mesirov; William E. Gillanders; Shuji Ogino; Nir Hacohen; Suzanne Gaudet; Michael J. Eck; Jeffrey A. Engelman; Ryan B. Corcoran; Kwok-Kin Wong; William C. Hahn

Although the roles of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling in KRAS-driven tumorigenesis are well established, KRAS activates additional pathways required for tumor maintenance, the inhibition of which are likely to be necessary for effective KRAS-directed therapy. Here, we show that the IκB kinase (IKK)-related kinases Tank-binding kinase-1 (TBK1) and IKKε promote KRAS-driven tumorigenesis by regulating autocrine CCL5 and interleukin (IL)-6 and identify CYT387 as a potent JAK/TBK1/IKKε inhibitor. CYT387 treatment ablates RAS-associated cytokine signaling and impairs Kras-driven murine lung cancer growth. Combined CYT387 treatment and MAPK pathway inhibition induces regression of aggressive murine lung adenocarcinomas driven by Kras mutation and p53 loss. These observations reveal that TBK1/IKKε promote tumor survival by activating CCL5 and IL-6 and identify concurrent inhibition of TBK1/IKKε, Janus-activated kinase (JAK), and MEK signaling as an effective approach to inhibit the actions of oncogenic KRAS.


Nature Immunology | 2009

The peptidyl-prolyl isomerase Pin1 facilitates cytokine-induced survival of eosinophils by suppressing Bax activation

Zhong Jian Shen; Stephane Esnault; Anna C. Schinzel; Christoph Borner; James S. Malter

The mechanisms by which cytokine signals prevent the activation and mitochondrial targeting of the proapoptotic protein Bax are unclear. Here we show, using primary human eosinophils, that in the absence of the prosurvival cytokines granulocyte-macrophage colony-stimulating factor and interleukin 5, Bax spontaneously underwent activation and initiated mitochondrial disruption. Inhibition of Bax resulted in less eosinophil apoptosis, even in the absence of cytokines. Granulocyte-macrophage colony-stimulating factor induced activation of the kinase Erk1/2, which phosphorylated Thr167 of Bax; this facilitated new interaction of Bax with the prolyl isomerase Pin1. Blockade of Pin1 led to cleavage and mitochondrial translocation of Bax and caspase activation, regardless of the presence of cytokines. Our findings indicate that Pin1 is a key mediator of prosurvival signaling and is a regulator of Bax function.

Collaboration


Dive into the Anna C. Schinzel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Root

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian F. Dunn

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Tyler Jacks

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Barbie

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Pablo Tamayo

University of California

View shared research outputs
Top Co-Authors

Avatar

Peter Sandy

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge