Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Bennin is active.

Publication


Featured researches published by David A. Bennin.


Nature Cell Biology | 2004

Calpain-mediated proteolysis of talin regulates adhesion dynamics

Santos J. Franco; Mary A. Rodgers; Benjamin J. Perrin; Jaewon Han; David A. Bennin; David R. Critchley; Anna Huttenlocher

Dynamic regulation of adhesion complexes is required for cell migration and has therefore emerged as a key issue in the study of cell motility. Recent progress has been made in defining some of the molecular mechanisms by which adhesion disassembly is regulated, including the contributions of adhesion adaptor proteins and tyrosine kinases. However, little is known about the potential contribution of proteolytic mechanisms to the regulation of adhesion complex dynamics. Here, we show that proteolysis of talin by the intracellular calcium-dependent protease calpain is critical for focal adhesion disassembly. We have generated a single point mutation in talin that renders it resistant to proteolysis by calpain. Quantification of adhesion assembly and disassembly rates demonstrates that calpain-mediated talin proteolysis is a rate-limiting step during adhesion turnover. Furthermore, we demonstrate that disassembly of other adhesion components, including paxillin, vinculin and zyxin, is also dependent on the ability of calpain to cleave talin, suggesting a general role for talin proteolysis in regulating adhesion turnover. Together, these findings identify calpain-mediated proteolysis of talin as a mechanism by which adhesion dynamics are regulated.


Journal of Biological Chemistry | 2010

Regulation of Adhesion Dynamics by Calpain-mediated Proteolysis of Focal Adhesion Kinase (FAK)

Keefe T. Chan; David A. Bennin; Anna Huttenlocher

The coordinated and dynamic regulation of adhesions is required for cell migration. We demonstrated previously that limited proteolysis of talin1 by the calcium-dependent protease calpain 2 plays a critical role in adhesion disassembly in fibroblasts (Franco, S. J., Rodgers, M. A., Perrin, B. J., Han, J., Bennin, D. A., Critchley, D. R., and Huttenlocher, A. (2004) Nat. Cell Biol. 6, 977–983). However, little is known about the contribution of other calpain substrates to the regulation of adhesion dynamics. We now provide evidence that calpain 2-mediated proteolysis of focal adhesion kinase (FAK) regulates adhesion dynamics in motile cells. We mapped the preferred calpain cleavage site between the two C-terminal proline-rich regions after Ser-745, resulting in a C-terminal fragment similar in size to the FAK-related non-kinase (FRNK). We generated mutant FAK with a point mutation (V744G) that renders FAK resistant to calpain proteolysis but retains other biochemical properties of FAK. Using time-lapse microscopy, we show that the dynamics of green fluorescent protein-talin1 are impaired in FAK-deficient cells. Expression of wild-type but not calpain-resistant FAK rescues talin dynamics in FAK-deficient cells. Taken together, our findings suggest a novel role for calpain proteolysis of FAK in regulating adhesion dynamics in motile cells.


Journal of Biological Chemistry | 2011

Calpain-mediated proteolysis of paxillin negatively regulates focal adhesion dynamics and cell migration

Christa L. Cortesio; Lindsy R. Boateng; Timothy M. Piazza; David A. Bennin; Anna Huttenlocher

The dynamic turnover of integrin-mediated adhesions is important for cell migration. Paxillin is an adaptor protein that localizes to focal adhesions and has been implicated in cell motility. We previously reported that calpain-mediated proteolysis of talin1 and focal adhesion kinase mediates adhesion disassembly in motile cells. To determine whether calpain-mediated paxillin proteolysis regulates focal adhesion dynamics and cell motility, we mapped the preferred calpain proteolytic site in paxillin. The cleavage site is between the paxillin LD1 and LD2 motifs and generates a C-terminal fragment that is similar in size to the alternative product paxillin delta. The calpain-generated proteolytic fragment, like paxillin delta, functions as a paxillin antagonist and impairs focal adhesion disassembly and migration. We generated mutant paxillin with a point mutation (S95G) that renders it partially resistant to calpain proteolysis. Paxillin-deficient cells that express paxillin S95G display increased turnover of zyxin-containing adhesions using time-lapse microscopy and also show increased migration. Moreover, cancer-associated somatic mutations in paxillin are common in the N-terminal region between the LD1 and LD2 motifs and confer partial calpain resistance. Taken together, these findings suggest a novel role for calpain-mediated proteolysis of paxillin as a negative regulator of focal adhesion dynamics and migration that may function to limit cancer cell invasion.


Journal of Leukocyte Biology | 2013

Localized bacterial infection induces systemic activation of neutrophils through Cxcr2 signaling in zebrafish

Qing Deng; Milka Sarris; David A. Bennin; Julie M. Green; Philippe Herbomel; Anna Huttenlocher

Neutrophils are the first line of defense against tissue damage and are rapidly mobilized to sites of bacterial infection. However, the signals that regulate neutrophil recruitment are not well defined. Here, using photolabel‐enabled fate mapping in zebrafish larvae, we show that localized otic infection with Pseudomonas aeruginosa induces systemic activation and mobilization of neutrophils from the CHT through Cxcr2 signaling. We have cloned the zebrafish Cxcr1 and Cxcr2 receptors and show that Cxcr2 functions as a Cxcl8 receptor in live zebrafish. With the use of morpholino‐mediated depletion, we show that infection‐induced neutrophil mobilization from the CHT is mediated by Cxcr2 but not Cxcr1. By contrast, Cxcr2 depletion does not affect neutrophil recruitment to the chemoattractant LTB4. Taken together, our findings identify Cxcl8‐Cxcr2 signaling as an infection‐induced long‐range cue that mediates neutrophil motility and mobilization from hematopoietic tissues, positioning Cxcr2 as a critical pathway that mediates infection‐induced systemic activation of neutrophils.


Blood | 2014

The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages

Taylor W. Starnes; David A. Bennin; Xinyu Bing; Jens C. Eickhoff; Daniel C. Grahf; Jason M. Bellak; Christine M. Seroogy; Polly J. Ferguson; Anna Huttenlocher

PSTPIP1 is a cytoskeletal adaptor and F-BAR protein that has been implicated in autoinflammatory disease, most notably in the PAPA syndrome: pyogenic sterile arthritis, pyoderma gangrenosum, and acne. However, the mechanism by which PSTPIP1 regulates the actin cytoskeleton and contributes to disease pathogenesis remains elusive. Here, we show that endogenous PSTPIP1 negatively regulates macrophage podosome organization and matrix degradation. We identify a novel PSTPIP1-R405C mutation in a patient presenting with aggressive pyoderma gangrenosum. Identification of this mutation reveals that PSTPIP1 regulates the balance of podosomes and filopodia in macrophages. The PSTPIP1-R405C mutation is in the SRC homology 3 (SH3) domain and impairs Wiskott-Aldrich syndrome protein (WASP) binding, but it does not affect interaction with protein-tyrosine phosphatase (PTP)-PEST. Accordingly, WASP inhibition reverses the elevated F-actin content, filopodia formation, and matrix degradation induced by PSTPIP1-R405C. Our results uncover a novel role for PSTPIP1 and WASP in orchestrating different types of actin-based protrusions. Our findings implicate the cytoskeletal regulatory functions of PSTPIP1 in the pathogenesis of pyoderma gangrenosum and suggest that the cytoskeleton is a rational target for therapeutic intervention in autoinflammatory disease.


Journal of Immunology | 2011

Contact-Dependent T Cell Activation and T Cell Stopping Require Talin1

Sarah A. Wernimont; Andrew J. Wiemer; David A. Bennin; Susan J. Monkley; Thomas Ludwig; David R. Critchley; Anna Huttenlocher

T cell–APC contact initiates T cell activation and is maintained by the integrin LFA-1. Talin1, an LFA-1 regulator, localizes to the immune synapse (IS) with unknown roles in T cell activation. In this study, we show that talin1-deficient T cells have defects in contact-dependent T cell stopping and proliferation. Although talin1-deficient T cells did not form stable interactions with APCs, transient contacts were sufficient to induce signaling. In contrast to prior models, LFA-1 polarized to T cell–APC contacts in talin1-deficient T cells, but vinculin and F-actin polarization at the IS was impaired. These results indicate that T cell proliferation requires sustained, talin1-mediated T cell–APC interactions and that talin1 is necessary for F-actin polarization and the stability of the IS.


Molecular Biology of the Cell | 2010

Actin-binding protein-1 interacts with WASp-interacting protein to regulate growth factor-induced dorsal ruffle formation.

Christa L. Cortesio; Benjamin J. Perrin; David A. Bennin; Anna Huttenlocher

The authors show that the mammalian actin binding protein-1 (mAbp1) is required for PDGF-induced dorsal ruffle formation. mAbp1 interacts directly with WASp Interacting Protein (WIP) through its SH3 domain, and this interaction is important for regulating dorsal ruffle formation.


Molecular Biology of the Cell | 2008

The PCH Family Member Proline-Serine-Threonine Phosphatase–interacting Protein 1 Targets to the Leukocyte Uropod and Regulates Directed Cell Migration

Kate M. Cooper; David A. Bennin; Anna Huttenlocher

Pombe Cdc15 homology (PCH) family members have emerged as important regulators of membrane-cytoskeletal interactions. Here we show that PSTPIP1, a PCH family member expressed in hematopoietic cells, regulates the motility of neutrophil-like cells and is a novel component of the leukocyte uropod where it colocalizes with other uropod components, such as type I PIPKIgamma. Furthermore, we show that PSTPIP1 association with the regulator of endocytosis, dynamin 2, and PSTPIP1 expression impairs transferrin uptake and endocytosis. We also show that PSTPIP1 localizes at the rear of neutrophils with a subpopulation of F-actin that is specifically detected by the binding of an F-actin probe that detects a more stable population of actin. Finally, we show that actin polymerization, but not the microtubule network, is necessary for the polarized distribution of PSTPIP1 toward the rear of the cell. Together, our findings demonstrate that PSTPIP1 is a novel component of the leukocyte uropod that regulates endocytosis and cell migration.


Arthritis Research & Therapy | 2012

Citrullination of fibronectin modulates synovial fibroblast behavior.

Miriam A. Shelef; David A. Bennin; Deane F. Mosher; Anna Huttenlocher

IntroductionRheumatoid arthritis is an autoimmune arthritis characterized by joint destruction. Anti-citrullinated protein antibodies are pathologic in rheumatoid arthritis, but the role of the citrullinated proteins themselves is much less clear. Citrullination is the conversion of the arginine residues of a protein to citrulline. In the inflamed rheumatoid joint there is increased protein citrullination. Several proteins are citrullinated in rheumatoid arthritis, including collagen type II, fibrinogen, and fibronectin. Fibronectin is thought to mediate the adhesion of joint-invading synovial fibroblasts to the rheumatoid cartilage in addition to regulating other synovial fibroblast functions. However, the effect of citrullinated fibronectin on synovial fibroblasts is unknown.MethodsTo investigate the effect of citrullinated fibronectin on synovial fibroblast behavior, we cultured normal murine, arthritic murine, and human rheumatoid synovial fibroblasts. We then compared several synovial fibroblast functions in the presence of fibronectin versus citrullinated fibronectin. We assessed adhesion with time-lapse microscopy, migration with transwell assays, focal adhesion kinase and paxillin phosphorylation by western blot, and focal matrix degradation by fluorescent gelatin degradation.ResultsNormal synovial fibroblasts have impaired adhesion, spreading, migration, and integrin-mediated phosphorylation of focal adhesion kinase and paxillin on citrullinated fibronectin. Murine arthritic and human rheumatoid synovial fibroblasts also have impaired adhesion and spreading on citrullinated fibronectin, but focal matrix degradation is unaffected by citrullinated fibronectin.ConclusionCitrullination of fibronectin alters synovial fibroblast behavior and may affect how these cells adhere to and invade the joint and travel through the bloodstream. This work suggests an important role for the interaction of synovial fibroblasts with citrullinated matrix in the pathophysiology of rheumatoid arthritis.


Developmental Dynamics | 2009

Muscle degeneration and leukocyte infiltration caused by mutation of zebrafish fad24

Kevin B. Walters; M. Ernest Dodd; Jonathan R. Mathias; Andrea J. Gallagher; David A. Bennin; Jennifer Rhodes; John P. Kanki; A. Thomas Look; Yevgenya Grinblat; Anna Huttenlocher

Factor for adipocyte differentiation 24 (fad24) is a novel gene that has been implicated in adipocyte differentiation and DNA replication. In a screen for zebrafish mutants that have an abnormal tissue distribution of neutrophils, we identified an insertional allele of fad24, fad24hi1019. Homozygous fad24hi1019 larvae exhibit muscle degeneration accompanied by leukocyte infiltration. Muscle degeneration was extensive and included tissue apoptosis and disorganized, poorly striated muscle fibers. Blocking apoptosis using pan‐caspase inhibitors resulted in decreased neutrophil recruitment into the body of the larva, suggesting a causative link between apoptosis and leukocyte infiltration. These findings suggest that zebrafish is a powerful genetic model system to address the interplay between muscle degeneration and leukocyte infiltration, and indicate that tissue apoptosis may contribute to neutrophil recruitment in some inflammatory states. Developmental Dynamics 238:86–99, 2009.

Collaboration


Dive into the David A. Bennin's collaboration.

Top Co-Authors

Avatar

Anna Huttenlocher

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Keefe T. Chan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin J. Perrin

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Christa L. Cortesio

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge