Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Broadbent is active.

Publication


Featured researches published by David A. Broadbent.


Journal of Cardiovascular Magnetic Resonance | 2014

Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study

Darius Dabir; Nicholas Child; Ashwin Kalra; Toby Rogers; Rolf Gebker; Andrew Jabbour; Sven Plein; Chung-Yao Yu; J. Otton; Ananth Kidambi; Adam K McDiarmid; David A. Broadbent; David M. Higgins; Bernhard Schnackenburg; Lucy Foote; Ciara Cummins; Eike Nagel; Valentina O. Puntmann

BackgroundT1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting.MethodsHealthy subjects (n = 102; mean age 41 years (range 17–83), male, n = 53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, λ and extracellular volume fraction (ECV) in a core lab using standardized postprocessing.ResultsIn healthy controls, mean native T1 values were 950 ± 21 msec at 1.5 T and 1052 ± 23 at 3 T. λ and ECV values were 0.44 ± 0.06 and 0.25 ± 0.04 at 1.5 T, and 0.44 ± 0.07 and 0.26 ± 0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. λ and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1.ConclusionWe show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites.


Journal of Cardiovascular Magnetic Resonance | 2017

Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review

Philip Haaf; Pankaj Garg; Daniel Messroghli; David A. Broadbent; John P. Greenwood; Sven Plein

Cardiovascular Magnetic Resonance is increasingly used to differentiate the aetiology of cardiomyopathies. Late Gadolinium Enhancement (LGE) is the reference standard for non-invasive imaging of myocardial scar and focal fibrosis and is valuable in the differential diagnosis of ischaemic versus non-ischaemic cardiomyopathy. Diffuse fibrosis may go undetected on LGE imaging. Tissue characterisation with parametric mapping methods has the potential to detect and quantify both focal and diffuse alterations in myocardial structure not assessable by LGE. Native and post-contrast T1 mapping in particular has shown promise as a novel biomarker to support diagnostic, therapeutic and prognostic decision making in ischaemic and non-ischaemic cardiomyopathies as well as in patients with acute chest pain syndromes. Furthermore, changes in the myocardium over time may be assessed longitudinally with this non-invasive tissue characterisation method.


Magnetic Resonance in Medicine | 2013

Myocardial blood flow at rest and stress measured with dynamic contrast-enhanced MRI: Comparison of a distributed parameter model with a fermi function model

David A. Broadbent; John D Biglands; Abdulghani M Larghat; Steven Sourbron; Aleksandra Radjenovic; John P. Greenwood; Sven Plein; David L. Buckley

To assess the feasibility of simultaneously measuring blood flow (Fb), Gd‐DTPA extraction fraction (E), and distribution volume (vd) in healthy myocardium at rest and under adenosine stress using dynamic contrast‐enhanced MRI.


Circulation-cardiovascular Imaging | 2016

Athletic Cardiac Adaptation in Males Is a Consequence of Elevated Myocyte Mass

Adam K McDiarmid; Peter P Swoboda; Bara Erhayiem; Rosalind E. Lancaster; Gemma K. Lyall; David A. Broadbent; Laura E Dobson; Tarique A Musa; David P Ripley; Pankaj Garg; John P. Greenwood; Carrie Ferguson; Sven Plein

Background—Cardiac remodeling occurs in response to regular athletic training, and the degree of remodeling is associated with fitness. Understanding the myocardial structural changes in athlete’s heart is important to develop tools that differentiate athletic from cardiomyopathic change. We hypothesized that athletic left ventricular hypertrophy is a consequence of increased myocardial cellular rather than extracellular mass as measured by cardiovascular magnetic resonance. Methods and Results—Forty-five males (30 athletes and 15 sedentary age-matched healthy controls) underwent comprehensive cardiovascular magnetic resonance studies, including native and postcontrast T1 mapping for extracellular volume calculation. In addition, the 30 athletes performed a maximal exercise test to assess aerobic capacity and anaerobic threshold. Participants were grouped by athleticism: untrained, low performance, and high performance (O2max <60 or>60 mL/kg per min, respectively). In athletes, indexed cellular mass was greater in high- than low-performance athletes 60.7±7.5 versus 48.6±6.3 g/m2; P<0.001), whereas extracellular mass was constant (16.3±2.2 versus 15.3±2.2 g/m2; P=0.20). Indexed left ventricular end-diastolic volume and mass correlated with O2max (r=0.45, P=0.01; r=0.55, P=0.002) and differed significantly by group (P=0.01; P<0.001, respectively). Extracellular volume had an inverse correlation with O2max (r=−0.53, P=0.003 and left ventricular mass index (r=-0.44, P=0.02). Conclusions—Increasing left ventricular mass in athlete’s heart occurs because of an expansion of the cellular compartment while the extracellular volume becomes relatively smaller: a difference which becomes more marked as left ventricular mass increases. Athletic remodeling, both on a macroscopic and cellular level, is associated with the degree of an individual’s fitness. Cardiovascular magnetic resonance ECV quantification may have a future role in differentiating athlete’s heart from change secondary to cardiomyopathy.


Journal of Cardiovascular Magnetic Resonance | 2014

Susceptibility-weighted cardiovascular magnetic resonance in comparison to T2 and T2 star imaging for detection of intramyocardial hemorrhage following acute myocardial infarction at 3 Tesla

Ananth Kidambi; John D Biglands; David M. Higgins; David P Ripley; Arshad Zaman; David A. Broadbent; Adam K McDiarmid; Peter P Swoboda; Tarique A Musa; Bara Erhayiem; John P. Greenwood; Sven Plein

BackgroundIntramyocardial hemorrhage (IMH) identified by cardiovascular magnetic resonance (CMR) is an established prognostic marker following acute myocardial infarction (AMI). Detection of IMH by T2-weighted or T2 star CMR can be limited by long breath hold times and sensitivity to artefacts, especially at 3T. We compared the image quality and diagnostic ability of susceptibility-weighted magnetic resonance imaging (SW MRI) with T2-weighted and T2 star CMR to detect IMH at 3T.MethodsForty-nine patients (42 males; mean age 58 years, range 35-76) underwent 3T cardiovascular magnetic resonance (CMR) 2 days following re-perfused AMI. T2-weighted, T2 star and SW MRI images were obtained. Signal and contrast measurements were compared between the three methods and diagnostic accuracy of SW MRI was assessed against T2w images by 2 independent, blinded observers. Image quality was rated on a 4-point scale from 1 (unusable) to 4 (excellent).ResultsOf 49 patients, IMH was detected in 20 (41%) by SW MRI, 21 (43%) by T2-weighted and 17 (34%) by T2 star imaging (p =ns). Compared to T2-weighted imaging, SW MRI had sensitivity of 93% and specificity of 86%. SW MRI had similar inter-observer reliability to T2-weighted imaging (κ =0.90 and κ =0.88 respectively); both had higher reliability than T2 star (κ =0.53). Breath hold times were shorter for SW MRI (4 seconds vs. 16 seconds) with improved image quality rating (3.8 ± 0.4, 3.3 ± 1.0, 2.8 ± 1.1 respectively; p < 0.01).ConclusionsSW MRI is an accurate and reproducible way to detect IMH at 3T. The technique offers considerably shorter breath hold times than T2-weighted and T2 star imaging, and higher image quality scores.


Journal of Cardiovascular Magnetic Resonance | 2015

Single bolus versus split dose gadolinium administration in extra-cellular volume calculation at 3 Tesla

Adam K McDiarmid; Peter P Swoboda; Bara Erhayiem; David P Ripley; Ananth Kidambi; David A. Broadbent; David M. Higgins; John P. Greenwood; Sven Plein

BackgroundDiffuse myocardial fibrosis may be quantified with cardiovascular magnetic resonance (CMR) by calculating extra-cellular volume (ECV) from native and post-contrast T1 values. Accurate ECV calculation is dependent upon the contrast agent having reached equilibrium within tissue compartments. Previous studies have used infusion or single bolus injections of contrast to calculate ECV. In clinical practice however, split dose contrast injection is commonly used as part of stress/rest perfusion studies. In this study we sought to assess the effects of split dose versus single bolus contrast administration on ECV calculation.MethodsTen healthy volunteers and five patients ( 4 ischaemic heart disease, 1 hypertrophic cardiomyopathy) were studied on a 3.0 Tesla (Philips Achieva TX) MR system and underwent two (patients) or three (volunteers) separate CMR studies over a mean of 12 and 30 days respectively. Volunteers underwent one single bolus contrast study (Gadovist 0.15mmol/kg). In two further studies, contrast was given in two boluses (0.075mmol/kg per bolus) as part of a clinical adenosine stress/rest perfusion protocol, boluses were separated by 12 minutes. Patients underwent one bolus and one stress perfusion study only. T1 maps were acquired pre contrast and 15 minutes following the single bolus or second contrast injection.ResultsECV agreed between bolus and split dose contrast administration (coefficient of variability 5.04%, bias 0.009, 95% CI −3.754 to 3.772, r2 = 0.973, p = 0.001)). Inter-study agreement with split dose administration was good (coefficient of variability, 5.67%, bias −0.018, 95% CI −4.045 to 4.009, r2 = 0.766, p > 0.001).ConclusionECV quantification using split dose contrast administration is reproducible and agrees well with previously validated methods in healthy volunteers, as well as abnormal and remote myocardium in patients. This suggests that clinical perfusion CMR studies may incorporate assessment of tissue composition by ECV based on T1 mapping.


Jacc-cardiovascular Imaging | 2017

Myocardial Extracellular Volume Estimation by CMR Predicts Functional Recovery Following Acute MI

Ananth Kidambi; Manish Motwani; Akhlaque Uddin; David P Ripley; Adam K McDiarmid; Peter P Swoboda; David A. Broadbent; Tarique A Musa; Bara Erhayiem; Joshua Leader; Pierre Croisille; Patrick Clarysse; John P. Greenwood; Sven Plein

Objectives In the setting of reperfused acute myocardial infarction (AMI), the authors sought to compare prediction of contractile recovery by infarct extracellular volume (ECV), as measured by T1-mapping cardiac magnetic resonance (CMR), with late gadolinium enhancement (LGE) transmural extent. Background The transmural extent of myocardial infarction as assessed by LGE CMR is a strong predictor of functional recovery, but accuracy of the technique may be reduced in AMI. ECV mapping by CMR can provide a continuous measure associated with the severity of tissue damage within infarcted myocardium. Methods Thirty-nine patients underwent acute (day 2) and convalescent (3 months) CMR scans following AMI. Cine imaging, tissue tagging, T2-weighted imaging, modified Look-Locker inversion T1 mapping natively and 15 min post–gadolinium-contrast administration, and LGE imaging were performed. The ability of acute infarct ECV and acute transmural extent of LGE to predict convalescent wall motion, ejection fraction (EF), and strain were compared per-segment and per-patient. Results Per-segment, acute ECV and LGE transmural extent were associated with convalescent wall motion score (p < 0.01; p < 0.01, respectively). ECV had higher accuracy than LGE extent to predict improved wall motion (area under receiver-operating characteristics curve 0.77 vs. 0.66; p = 0.02). Infarct ECV ≤0.5 had sensitivity 81% and specificity 65% for prediction of improvement in segmental function; LGE transmural extent ≤0.5 had sensitivity 61% and specificity 71%. Per-patient, ECV and LGE correlated with convalescent wall motion score (r = 0.45; p < 0.01; r = 0.41; p = 0.02, respectively) and convalescent EF (p < 0.01; p = 0.04). ECV and LGE extent were not significantly correlated (r = 0.34; p = 0.07). In multivariable linear regression analysis, acute infarct ECV was independently associated with convalescent infarct strain and EF (p = 0.03; p = 0.04), whereas LGE was not (p = 0.29; p = 0.24). Conclusions Acute infarct ECV in reperfused AMI can complement LGE assessment as an additional predictor of regional and global LV functional recovery that is independent of transmural extent of infarction.


Circulation-cardiovascular Imaging | 2017

Acute Infarct Extracellular Volume Mapping to Quantify Myocardial Area at Risk and Chronic Infarct Size on Cardiovascular Magnetic Resonance ImagingCLINICAL PERSPECTIVE

Pankaj Garg; David A. Broadbent; Peter P Swoboda; James Rj Foley; Graham J. Fent; Tarique A Musa; David P Ripley; Bara Erhayiem; Laura E Dobson; Adam K McDiarmid; Philip Haaf; Ananth Kidambi; Rob J. van der Geest; John P. Greenwood; Sven Plein

Background— Late gadolinium enhancement (LGE) imaging overestimates acute infarct size. The main aim of this study was to investigate whether acute extracellular volume (ECV) maps can reliably quantify myocardial area at risk (AAR) and final infarct size (IS). Methods and Results— Fifty patients underwent cardiovascular magnetic resonance imaging acutely (24–72 hours) and at convalescence (3 months). The cardiovascular magnetic resonance protocol included cines, T2-weighted imaging, native T1 maps, 15-minute post-contrast T1 maps, and LGE. Optimal AAR and IS ECV thresholds were derived in a validation group of 10 cases (160 segments). Eight hundred segments (16 per patient) were analyzed to quantify AAR/IS by ECV maps (ECV thresholds for AAR is 33% and IS is 46%), T2-weighted imaging, T1 maps, and acute LGE. Follow-up LGE imaging was used as the reference standard for final IS and viability assessment. The AAR derived from ECV maps (threshold of >33) demonstrated good agreement with T2-weighted imaging–derived AAR (bias, 0.18; 95% confidence interval [CI], −1.6 to 1.3) and AAR derived from native T1 maps (bias=1; 95% CI, −0.37 to 2.4). ECV demonstrated the best linear correlation to final IS at a threshold of >46% (R=0.96; 95% CI, 0.92–0.98; P<0.0001). ECV maps demonstrated better agreement with final IS than acute IS on LGE (ECV maps: bias, 1.9; 95% CI, 0.4–3.4 versus LGE imaging: bias, 10; 95% CI, 7.7–12.4). On multiple variable regression analysis, the number of nonviable segments was independently associated with IS by ECV maps (&bgr;=0.86; P<0.0001). Conclusions— ECV maps can reliably quantify AAR and final IS in reperfused acute myocardial infarction. Acute ECV maps were superior to acute LGE in terms of agreement with final IS. IS quantified by ECV maps are independently associated with viability at follow-up.


Magnetic Resonance in Medicine | 2016

Sensitivity of quantitative myocardial dynamic contrast-enhanced MRI to saturation pulse efficiency, noise and t1 measurement error: Comparison of nonlinearity correction methods.

David A. Broadbent; John D Biglands; David P Ripley; David M. Higgins; John P. Greenwood; Sven Plein; David L. Buckley

To compare methods designed to minimize or correct signal nonlinearity in quantitative myocardial dynamic contrast‐enhanced (DCE) MRI.


Magnetic Resonance in Medicine | 2018

Estimating breast tumor blood flow during neoadjuvant chemotherapy using interleaved high temporal and high spatial resolution MRI

Leonidas Georgiou; Nisha Sharma; David A. Broadbent; Daniel Wilson; Barbara Dall; Anmol Gangi; David L. Buckley

To evaluate an interleaved MRI sampling strategy that acquires both high temporal resolution (HTR) dynamic contrast‐enhanced (DCE) data for quantifying breast tumor blood flow (TBF) and high spatial resolution (HSR) DCE data for clinical reporting, following a single standard injection of contrast agent.

Collaboration


Dive into the David A. Broadbent's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge