David A. Coil
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David A. Coil.
Bioinformatics | 2015
David A. Coil; Guillaume Jospin; Aaron E. Darling
MOTIVATION Open-source bacterial genome assembly remains inaccessible to many biologists because of its complexity. Few software solutions exist that are capable of automating all steps in the process of de novo genome assembly from Illumina data. RESULTS A5-miseq can produce high-quality microbial genome assemblies on a laptop computer without any parameter tuning. A5-miseq does this by automating the process of adapter trimming, quality filtering, error correction, contig and scaffold generation and detection of misassemblies. Unlike the original A5 pipeline, A5-miseq can use long reads from the Illumina MiSeq, use read pairing information during contig generation and includes several improvements to read trimming. Together, these changes result in substantially improved assemblies that recover a more complete set of reference genes than previous methods. AVAILABILITY A5-miseq is licensed under the GPL open-source license. Source code and precompiled binaries for Mac OS X 10.6+ and Linux 2.6.15+ are available from http://sourceforge.net/projects/ngopt CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Journal of Virology | 2004
David A. Coil; A. Dusty Miller
ABSTRACT The envelope protein from vesicular stomatitis virus (VSV) has become an important tool for gene transfer and gene therapy. It is widely used mainly because of its ability to mediate virus entry into all cell types tested to date. Consistent with the broad tropism of the virus, the receptor for VSV is thought to be a ubiquitous membrane lipid, phosphatidylserine (PS). However, the evidence for this hypothesis is indirect and incomplete. Here, we have examined the potential interaction of VSV and PS at the plasma membrane in more detail. Measurements of cell surface levels of PS show a wide range across cell types from different organisms. We demonstrate that there is no correlation between the cell surface PS levels and VSV infection or binding. We also demonstrate that an excess of annexin V, which binds specifically and tightly to PS, does not inhibit infection or binding by VSV. While the addition of PS to cells does allow increased virus entry, we show that this effect is not specific to the VSV envelope. We conclude that PS is not the cell surface receptor for VSV, although it may be involved in a postbinding step of virus entry.
CBE- Life Sciences Education | 2010
David A. Coil; Mary Pat Wenderoth; Matthew J. Cunningham; Clarissa Dirks
Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.
Genome Biology | 2006
Colin Pritchard; David A. Coil; Sarah Hawley; Li Hsu; Peter S. Nelson
BackgroundQualitative and quantitative variability in gene expression represents the substrate for external conditions to exert selective pressures for natural selection. Current technologies allow for some forms of genetic variation, such as DNA mutations and polymorphisms, to be determined accurately on a comprehensive scale. Other components of variability, such as stochastic events in cellular transcriptional and translational processes, are less well characterized. Although potentially important, the relative contributions of genomic versus epigenetic and stochastic factors to variation in gene expression have not been quantified in mammalian species.ResultsIn this study we compared microarray-based measures of hepatic transcript abundance levels within and between five different strains of Mus musculus. Within each strain 23% to 44% of all genes exhibited statistically significant differences in expression between genetically identical individuals (positive false discovery rate of 10%). Genes functionally associated with cell growth, cytokine activity, amine metabolism, and ubiquitination were enriched in this group. Genetic divergence between individuals of different strains also contributed to transcript abundance level differences, but to a lesser extent than intra-strain variation, with approximately 3% of all genes exhibiting inter-strain expression differences.ConclusionThese results indicate that although DNA sequence fixes boundaries for gene expression variability, there remain considerable latitudes of expression within these genome-defined limits that have the potential to influence phenotypes. The extent of normal or expected natural variability in gene expression may provide an additional level of phenotypic opportunity for natural selection.
Journal of Virology | 2005
David A. Coil; A. Dusty Miller
ABSTRACT Enveloped virus vectors are used in a wide variety of applications. We have discovered that treatment of cultured cells with phosphatidylserine (PS) liposomes can increase virus vector infection by up to 20-fold. This effect does not abrogate virus receptor requirements, is specific to PS compared to other phospholipids, and is limited to enveloped viruses. Furthermore, the enhancement of infection does not occur through increases in virus receptor levels or virus binding, indicating that virus fusion is enhanced. The liposomes are easily generated, store well, and allow enhanced infection with a variety of virus vectors and cell types.
PeerJ | 2015
Madison I. Dunitz; Jenna M. Lang; Guillaume Jospin; Aaron E. Darling; Jonathan A. Eisen; David A. Coil
The sequencing, assembly, and basic analysis of microbial genomes, once a painstaking and expensive undertaking, has become much easier for research labs with access to standard molecular biology and computational tools. However, there are a confusing variety of options available for DNA library preparation and sequencing, and inexperience with bioinformatics can pose a significant barrier to entry for many who may be interested in microbial genomics. The objective of the present study was to design, test, troubleshoot, and publish a simple, comprehensive workflow from the collection of an environmental sample (a swab) to a published microbial genome; empowering even a lab or classroom with limited resources and bioinformatics experience to perform it.
Journal of Virology | 2001
David A. Coil; J. H. Strickler; Sharath K. Rai; A D Miller
ABSTRACT Jaagsiekte sheep retrovirus (JSRV) replicates in the lungs of sheep and causes the secretion of copious lung fluid containing the virus. Adaptation of JSRV to infection and replication in the lung and its apparent resistance to the denaturing activity of lung fluid suggest that vectors based on JSRV would be useful for gene therapy targeted to the lung. We show here that a retrovirus vector bearing the JSRV Env is stable during treatment with lung surfactant while an otherwise identical vector bearing an amphotropic Env is inactivated. Furthermore, the JSRV vector was stable during centrifugation, allowing facile vector concentration, and showed no loss of activity after six freeze-thaw cycles. However, the JSRV vector was inactivated by standard disinfectants, indicating that JSRV vectors pose no unusual safety risk related to their improved stability under other conditions.
Mbio | 2017
Joanne B. Emerson; Rachel I. Adams; Clarisse M. Betancourt Román; Brandon Brooks; David A. Coil; Katherine E. Dahlhausen; Holly H. Ganz; Erica M. Hartmann; Tiffany Y. Hsu; Nicholas B. Justice; Ivan G. Paulino-Lima; Julia C. Luongo; Despoina S. Lymperopoulou; Cinta Gomez-Silvan; Brooke Rothschild-Mancinelli; Melike Balk; Curtis Huttenhower; Andreas Nocker; Parag Vaishampayan; Lynn J. Rothschild
While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.
Archives of Microbiology | 2010
David A. Coil; Jozef Anné
Twitching motility, a flagella-independent type of translocation of bacteria over moist surfaces, requires an array of proteins, including FimV. To investigate the role of this protein in twitching motility in Legionella pneumophila, we have generated a knockout mutant of fimV and characterized its phenotypic effects. In addition to a major reduction in twitching motility, deletion of the fimV gene caused a number of other phenotypic effects including decreased protective pigment formation, and it also affected cell morphology. Since fimV contains a variable number of tandem repeats, which can vary according to the origin of a given strain, we have examined the importance of this variability found within the coding region of this gene. By complementing the knockout strain with constructs containing a different number of this tandem repeat, we have been able to also show that repeat copy number is important in the functioning of this gene.
PeerJ | 2016
David A. Coil; Russell Y. Neches; Jenna M. Lang; Wendy E. Brown; Mark Severance; Darlene Cavalier; Jonathan A. Eisen
Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.