Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Ehrmann is active.

Publication


Featured researches published by David A. Ehrmann.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Slow-wave sleep and the risk of type 2 diabetes in humans

Esra Tasali; Rachel Leproult; David A. Ehrmann; Eve Van Cauter

There is convincing evidence that, in humans, discrete sleep stages are important for daytime brain function, but whether any particular sleep stage has functional significance for the rest of the body is not known. Deep non-rapid eye movement (NREM) sleep, also known as slow-wave sleep (SWS), is thought to be the most “restorative” sleep stage, but beneficial effects of SWS for physical well being have not been demonstrated. The initiation of SWS coincides with hormonal changes that affect glucose regulation, suggesting that SWS may be important for normal glucose tolerance. If this were so, selective suppression of SWS should adversely affect glucose homeostasis and increase the risk of type 2 diabetes. Here we show that, in young healthy adults, all-night selective suppression of SWS, without any change in total sleep time, results in marked decreases in insulin sensitivity without adequate compensatory increase in insulin release, leading to reduced glucose tolerance and increased diabetes risk. SWS suppression reduced delta spectral power, the dominant EEG frequency range in SWS, and left other EEG frequency bands unchanged. Importantly, the magnitude of the decrease in insulin sensitivity was strongly correlated with the magnitude of the reduction in SWS. These findings demonstrate a clear role for SWS in the maintenance of normal glucose homeostasis. Furthermore, our data suggest that reduced sleep quality with low levels of SWS, as occurs in aging and in many obese individuals, may contribute to increase the risk of type 2 diabetes.


The Journal of Clinical Endocrinology and Metabolism | 2013

Diagnosis and Treatment of Polycystic Ovary Syndrome: An Endocrine Society Clinical Practice Guideline

Richard S. Legro; Silva Arslanian; David A. Ehrmann; Kathleen M. Hoeger; M. Hassan Murad; Renato Pasquali; Corrine K. Welt

Objective: The aim was to formulate practice guidelines for the diagnosis and treatment of polycystic ovary syndrome (PCOS). Participants: An Endocrine Society-appointed Task Force of experts, a methodologist, and a medical writer developed the guideline. Evidence: This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system to describe both the strength of recommendations and the quality of evidence. Consensus Process: One group meeting, several conference calls, and e-mail communications enabled consensus. Committees and members of The Endocrine Society and the European Society of Endocrinology reviewed and commented on preliminary drafts of these guidelines. Two systematic reviews were conducted to summarize supporting evidence. Conclusions: We suggest using the Rotterdam criteria for diagnosing PCOS (presence of two of the following criteria: androgen excess, ovulatory dysfunction, or polycystic ovaries). Establishing a diagnosis of PCOS is problematic in adolescents and menopausal women. Hyperandrogenism is central to the presentation in adolescents, whereas there is no consistent phenotype in postmenopausal women. Evaluation of women with PCOS should exclude alternate androgen-excess disorders and risk factors for endometrial cancer, mood disorders, obstructive sleep apnea, diabetes, and cardiovascular disease. Hormonal contraceptives are the first-line management for menstrual abnormalities and hirsutism/acne in PCOS. Clomiphene is currently the first-line therapy for infertility; metformin is beneficial for metabolic/glycemic abnormalities and for improving menstrual irregularities, but it has limited or no benefit in treating hirsutism, acne, or infertility. Hormonal contraceptives and metformin are the treatment options in adolescents with PCOS. The role of weight loss in improving PCOS status per se is uncertain, but lifestyle intervention is beneficial in overweight/obese patients for other health benefits. Thiazolidinediones have an unfavorable risk-benefit ratio overall, and statins require further study.


Journal of Clinical Investigation | 1995

Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus.

David A. Ehrmann; Jeppe Sturis; Maria Byrne; Theodore Karrison; Robert L. Rosenfield; Kenneth S. Polonsky

The increased prevalence of non-insulin-dependent diabetes mellitus (NIDDM) among women with polycystic ovary syndrome (PCOS) has been ascribed to the insulin resistance characteristic of PCOS. This study was undertaken to determine the role of defects in insulin secretion as well as familial factors to the predisposition to NIDDM seen in PCOS. We studied three groups of women: PCOS with a family history of NIDDM (PCOS FHx POS; n = 11), PCOS without a family history of NIDDM (PCOS FHx NEG; n = 13), and women without PCOS who have a family history of NIDDM (NON-PCOS FHx POS; n = 8). Beta cell function was evaluated during a frequently sampled intravenous glucose tolerance test, by a low dose graded glucose infusion, and by the ability of the beta cell to be entrained by an oscillatory glucose infusion. PCOS FHx POS women were significantly less likely to demonstrate appropriate beta cell compensation for the degree of insulin resistance. The ability of the beta cell to entrain, as judged by the spectral power for insulin secretion rate, was significantly reduced in PCOS FHx POS subjects. In conclusion, a history of NIDDM in a first-degree relative appears to define a subset of PCOS subjects with a greater prevalence of insulin secretory defects. The risk of developing NIDDM imparted by insulin resistance in PCOS may be enhanced by these defects in insulin secretion.


The New England Journal of Medicine | 1992

Detection of Functional Ovarian Hyperandrogenism in Women with Androgen Excess

David A. Ehrmann; Robert L. Rosenfield; Randall B. Barnes; Deborah F. Brigell; Zubie Sheikh

BACKGROUND Distinguishing between ovarian and adrenal causes of androgen excess may be difficult. We have found that women with the polycystic ovary syndrome have supranormal plasma 17-hydroxyprogesterone responses to the gonadotropin-releasing hormone agonist nafarelin. We determined the usefulness of testing with nafarelin to distinguish ovarian causes of hyperandrogenism in women. METHODS We studied 40 consecutive women with hyperandrogenism who had oligomenorrhea, hirsutism, or acne. All 40 underwent testing with nafarelin, dexamethasone, and corticotropin with measurement of circulating concentrations of gonadotropins and steroid hormones, and 19 underwent ovarian ultrasonography. RESULTS The plasma 17-hydroxyprogesterone response to nafarelin was supranormal in 23 of the 40 women (58 percent), and the plasma androgen response to corticotropin was elevated in 23; 13 women had both abnormalities. Only one woman had conclusive evidence of a steroidogenic block; she had nonclassic adrenal 21-hydroxylase deficiency. Of the 23 women with abnormal responses to nafarelin, only 11 (48 percent) had elevated base-line serum luteinizing hormone concentrations. Of the 13 women with abnormal responses to nafarelin who underwent ultrasonography, 7 (54 percent) had polycystic ovaries. Peak plasma 17-hydroxyprogesterone concentrations after nafarelin administration correlated closely with plasma free testosterone concentrations after dexamethasone administration (r = 0.75, P less than 0.001). CONCLUSIONS Approximately half of women with oligomenorrhea, hirsutism, or acne have an abnormal response to the gonadotropin-releasing hormone agonist nafarelin, suggesting an ovarian cause of their androgen excess.


Journal of Clinical Investigation | 2000

Interactions between insulin resistance and insulin secretion in the development of glucose intolerance

Melissa K. Cavaghan; David A. Ehrmann; Kenneth S. Polonsky

Subjects who develop type 2 diabetes have a complex phenotype with defects in insulin secretion, increased hepatic glucose production, and resistance to the action of insulin, all of which contribute to the development of overt hyperglycemia. Although the precise mechanisms whereby these three factors interact to produce glucose intolerance and diabetes are uncertain, it has been suggested that the final common pathway responsible for the development of type 2 diabetes is the failure of the pancreatic β cell to compensate for insulin resistance (1). Here, we review evidence for this model from both human and animal studies, and we consider the effects of specific drug treatments and of heightened FFA levels on insulin sensitivity and insulin secretion in individuals at risk for type 2 diabetes. Coleman and coworkers (2), drawing on their work with the ob/ob mouse, first proposed that a failure of β-cell compensation for insulin resistance is responsible for the development of type 2 diabetes. When insulin-resistant ob/ob mice, which provide a genetic model of obesity, were bred with mice of different strains, the phenotypes of the progeny differed depending on their genetic background. Mice carrying the ob mutation in the C57BL/6 background had relatively normal blood glucose levels, whereas in the C57Ks background the animals developed overt hyperglycemia. The major difference between these two mouse strains lay in their β-cell responses. The nondiabetic C57BL/6 mice underwent a marked expansion of β-cell mass, whereas C57Ks animals showed histologic evidence of islet degeneration, degranulation, and progressive atrophy. The C57Ks animals accordingly had insulin levels about one-tenth those of the C57BL/6 animals, and these levels declined progressively with age. These data indicated that the genetic background on which insulin resistance develops influences the adequacy of pancreatic β-cell compensation for insulin resistance, and hence the predisposition to diabetes.


The New England Journal of Medicine | 1989

Pituitary-Ovarian Responses to Nafarelin Testing in the Polycystic Ovary Syndrome

Randall B. Barnes; Robert L. Rosenfield; Stephen Burstein; David A. Ehrmann

To investigate the basis of polycystic ovary syndrome, we examined the responses of patients to nafarelin, a specific gonadotropin-releasing-hormone agonist, given to stimulate pituitary and gonadal secretion. We compared 16 normal women in the follicular phase, 5 normal men, 8 women with polycystic ovary syndrome, and 1 woman with polycystic ovary syndrome caused by a 3 beta-hydroxysteroid dehydrogenase deficiency. After 100 micrograms of nafarelin was given subcutaneously, serum follicle-stimulating hormone and luteinizing hormone increased rapidly to peak levels within four hours. The women with polycystic ovary syndrome had a pattern similar to that of the men, with greater early luteinizing-hormone responses (30 minutes to 1 hour) and lower peak follicle-stimulating-hormone responses than normal women (P less than 0.05). Patients with polycystic ovary syndrome responded to gonadotropin stimulation with normal to increased production of plasma estrogens and increased levels of androstenedione at 16 to 24 hours (P less than 0.05). Elevated production of 17 alpha-hydroxyprogesterone was found in all the women with polycystic ovary syndrome and in the men. These abnormal responses were unchanged by pretreatment with dexamethasone to suppress adrenal function. In the patient with the 3 beta-hydroxysteroid dehydrogenase deficiency, both basal and stimulated plasma levels of delta 5-3 beta-hydroxysteroids before the enzymatic block were elevated, whereas plasma levels of 17 alpha-hydroxyprogesterone and androstenedione--the steroids immediately beyond the block--were low. We conclude that women with polycystic ovary syndrome have masculinized pituitary and ovarian responses to stimulation by nafarelin. Our findings suggest that the regulation of the ovarian 17-hydroxylase and C-17,20-lyase activities is abnormal in such women.


Journal of Clinical Investigation | 1997

Treatment with the oral antidiabetic agent troglitazone improves beta cell responses to glucose in subjects with impaired glucose tolerance.

Melissa K. Cavaghan; David A. Ehrmann; Maria Byrne; Kenneth S. Polonsky

Impaired glucose tolerance (IGT) is associated with defects in both insulin secretion and action and carries a high risk for conversion to non-insulin-dependent diabetes mellitus (NIDDM). Troglitazone, an insulin sensitizing agent, reduces glucose concentrations in subjects with NIDDM and IGT but is not known to affect insulin secretion. We sought to determine the role of beta cell function in mediating improved glucose tolerance. Obese subjects with IGT received 12 wk of either 400 mg daily of troglitazone (n = 14) or placebo (n = 7) in a randomized, double-blind design. Study measures at baseline and after treatment were glucose and insulin responses to a 75-g oral glucose tolerance test, insulin sensitivity index (SI) assessed by a frequently sampled intravenous glucose tolerance test, insulin secretion rates during a graded glucose infusion, and beta cell glucose-sensing ability during an oscillatory glucose infusion. Troglitazone reduced integrated glucose and insulin responses to oral glucose by 10% (P = 0.03) and 39% (P = 0.003), respectively. SI increased from 1.3+/-0.3 to 2.6+/-0.4 x 10(-)5min-1pM-1 (P = 0.005). Average insulin secretion rates adjusted for SI over the glucose interval 5-11 mmol/liter were increased by 52% (P = 0.02), and the ability of the beta cell to entrain to an exogenous oscillatory glucose infusion, as evaluated by analysis of spectral power, was improved by 49% (P = 0.04). No significant changes in these parameters were demonstrated in the placebo group. In addition to increasing insulin sensitivity, we demonstrate that troglitazone improves the reduced beta cell response to glucose characteristic of subjects with IGT. This appears to be an important factor in the observed improvement in glucose tolerance.


Annals of Internal Medicine | 2012

Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study.

Josiane L. Broussard; David A. Ehrmann; Eve Van Cauter; Esra Tasali; Matthew J. Brady

BACKGROUND Insufficient sleep increases the risk for insulin resistance, type 2 diabetes, and obesity, suggesting that sleep restriction may impair peripheral metabolic pathways. Yet, a direct link between sleep restriction and alterations in molecular metabolic pathways in any peripheral human tissue has not been shown. OBJECTIVE To determine whether sleep restriction results in reduced insulin sensitivity in subcutaneous fat, a peripheral tissue that plays a pivotal role in energy metabolism and balance. DESIGN Randomized, 2-period, 2-condition, crossover clinical study. SETTING University of Chicago Clinical Resource Center. PARTICIPANTS Seven healthy adults (1 woman, 6 men) with a mean age of 23.7 years (SD, 3.8) and mean body mass index of 22.8 kg/m(2) (SD, 1.6). INTERVENTION Four days of 4.5 hours in bed or 8.5 hours in bed under controlled conditions of caloric intake and physical activity. MEASUREMENTS Adipocytes collected from subcutaneous fat biopsy samples after normal and restricted sleep conditions were exposed to incremental insulin concentrations. The ability of insulin to increase levels of phosphorylated Akt (pAkt), a crucial step in the insulin-signaling pathway, was assessed. Total Akt (tAkt) served as a loading control. The insulin concentration for the half-maximal stimulation of the pAkt-tAkt ratio was used as a measure of cellular insulin sensitivity. Total body insulin sensitivity was assessed using a frequently sampled intravenous glucose tolerance test. RESULTS The insulin concentration for the half-maximal pAkt-tAkt response was nearly 3-fold higher (mean, 0.71 nM [SD, 0.27] vs. 0.24 nM [SD, 0.24]; P = 0.01; mean difference, 0.47 nM [SD, 0.33]; P = 0.01), and the total area under the receiver-operating characteristic curve of the pAkt-tAkt response was 30% lower (P = 0.01) during sleep restriction than during normal sleep. A reduction in total body insulin sensitivity (P = 0.02) paralleled this impaired cellular insulin sensitivity. LIMITATION This was a single-center study with a small sample size. CONCLUSION Sleep restriction results in an insulin-resistant state in human adipocytes. Sleep may be an important regulator of energy metabolism in peripheral tissues. PRIMARY FUNDING SOURCE National Institutes of Health.


The Journal of Clinical Endocrinology and Metabolism | 2012

Variants in DENND1A Are Associated with Polycystic Ovary Syndrome in Women of European Ancestry

Corrine K. Welt; Unnur Styrkarsdottir; David A. Ehrmann; Gudmar Thorleifsson; G. Arason; Jens A. Gudmundsson; Carole Ober; Robert L. Rosenfield; Richa Saxena; Unnur Thorsteinsdottir; William F. Crowley; Kari Stefansson

CONTEXT A genome-wide association study has identified three loci (five independent signals) that confer risk for polycystic ovary syndrome (PCOS) in Han Chinese women. Replication is necessary to determine whether the same variants confer risk for PCOS in women of European ancestry. OBJECTIVE The objective of the study was to test whether these PCOS risk variants in Han Chinese women confer risk for PCOS in women of European ancestry. DESIGN This was a case-control study. SETTING The study was conducted at deCODE Genetics in Iceland and two academic medical centers in the United States. PATIENTS Cases were 376 Icelandic women and 565 and 203 women from Boston, MA, and Chicago, IL, respectively, all diagnosed with PCOS by the National Institutes of Health criteria. Controls were 16,947, 483, and 189 women not known to have PCOS from Iceland, Boston, and Chicago, respectively. INTERVENTION There were no interventions. MAIN OUTCOMES Main outcomes were allele frequencies for seven variants in PCOS cases and controls. RESULTS Two strongly correlated Han Chinese PCOS risk variants on chromosome 9q33.3, rs10986105[C], and rs10818854[A], were replicated in samples of European ancestry with odds ratio of 1.68 (P = 0.00033) and odds ratio of 1.53 (P = 0.0019), respectively. Other risk variants at 2p16.3 (rs13405728), 2p21 (rs12468394, rs12478601, and rs13429458), and 9q33.3 (rs2479106), or variants correlated with them, did not associate with PCOS. The same allele of rs10986105 that increased the risk of PCOS also increased the risk of hyperandrogenism in women without PCOS from Iceland and demonstrated a stronger risk for PCOS defined by the National Institutes of Health criteria than the Rotterdam criteria. CONCLUSIONS We replicated one of the five Chinese PCOS association signals, represented by rs10986105 and rs10818854 on 9q33, in individuals of European ancestry. Examination of the subjects meeting at least one of the Rotterdam criteria for PCOS suggests that the variant may be involved in the hyperandrogenism and possibly the irregular menses of PCOS.


The Journal of Clinical Endocrinology and Metabolism | 2011

Treatment of Obstructive Sleep Apnea Improves Cardiometabolic Function in Young Obese Women with Polycystic Ovary Syndrome

Esra Tasali; Florian Chapotot; Rachel Leproult; Harry Whitmore; David A. Ehrmann

CONTEXT Women with polycystic ovary syndrome (PCOS) are insulin resistant and have a high risk of early-onset diabetes and cardiovascular disease. Obstructive sleep apnea (OSA) has adverse cardiometabolic consequences and is highly prevalent in women with PCOS. We sought to determine whether continuous positive airway pressure (CPAP) treatment of OSA has beneficial effects on cardiometabolic function in PCOS. METHODS Laboratory polysomnography and cardiometabolic measurements including insulin sensitivity and secretion (iv glucose tolerance test); 24-h profiles of plasma catecholamines, cortisol, and leptin; and daytime profiles of blood pressure and cardiac autonomic activity (heart rate variability) were obtained at baseline and again after 8 wk of home CPAP treatment with daily usage monitoring. RESULTS CPAP treatment modestly improved insulin sensitivity after controlling for body mass index (P = 0.013). The change in insulin sensitivity correlated positively with CPAP use (adjusted P = 0.027) and negatively with body mass index (adjusted P = 0.003). Daytime and nighttime norepinephrine levels were decreased after CPAP (P = 0.002), and the reductions were greater with increased CPAP use (P = 0.03). Epinephrine, cortisol, and leptin levels were not changed significantly. Daytime diastolic blood pressure decreased by an average of 2.3 mm Hg after CPAP (P = 0.035). Cardiac sympathovagal balance was 44% lower (P = 0.007) after CPAP, reflecting a shift toward lower sympathetic activity. CONCLUSIONS In young obese women with PCOS, successful treatment of OSA improves insulin sensitivity, decreases sympathetic output, and reduces diastolic blood pressure. The magnitude of these beneficial effects is modulated by the hours of CPAP use and the degree of obesity.

Collaboration


Dive into the David A. Ehrmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard S. Legro

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Ricardo Azziz

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Steven E. Kahn

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon L. Edelstein

George Washington University

View shared research outputs
Researchain Logo
Decentralizing Knowledge