Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Gutman is active.

Publication


Featured researches published by David A. Gutman.


Neuron | 2002

A Neural Basis for Social Cooperation

James K. Rilling; David A. Gutman; Thorsten Zeh; Giuseppe Pagnoni; Gregory S. Berns; Clinton D. Kilts

Cooperation based on reciprocal altruism has evolved in only a small number of species, yet it constitutes the core behavioral principle of human social life. The iterated Prisoners Dilemma Game has been used to model this form of cooperation. We used fMRI to scan 36 women as they played an iterated Prisoners Dilemma Game with another woman to investigate the neurobiological basis of cooperative social behavior. Mutual cooperation was associated with consistent activation in brain areas that have been linked with reward processing: nucleus accumbens, the caudate nucleus, ventromedial frontal/orbitofrontal cortex, and rostral anterior cingulate cortex. We propose that activation of this neural network positively reinforces reciprocal altruism, thereby motivating subjects to resist the temptation to selfishly accept but not reciprocate favors.


Biological Psychiatry | 2009

A Tractography Analysis of Two Deep Brain Stimulation White Matter Targets for Depression

David A. Gutman; Paul E. Holtzheimer; Timothy E. J. Behrens; Heidi Johansen-Berg; Helen S. Mayberg

BACKGROUND Deep brain stimulation (DBS) of the subcallosal cingulate white matter (SCCwm) or anterior limb of the internal capsule (ALIC) may be effective in treating depression. Connectivity patterns of these regions may inform on mechanisms of action for DBS of these targets. METHODS Diffusion tensor imaging (DTI) and probabilistic tractography were performed in 13 nondepressed subjects to determine connectivity patterns of SCCwm and ALIC. Tract maps were generated for each target in each subject, and tract voxels were coded as being unique to either target or shared. Group level tract maps were generated by including only those voxels common to at least 10 of 13 (>75%) subjects. RESULTS The two targets have distinct patterns of connectivity with regions of overlap. The SCCwm showed consistent ipsilateral connections to the medial frontal cortex, the full extent of the anterior and posterior cingulate, medial temporal lobe, dorsal medial thalamus, hypothalamus, nucleus accumbens, and the dorsal brainstem. The ALIC seed, in contrast, demonstrated widespread projections to frontal pole, medial temporal lobe, cerebellum, nucleus accumbens, thalamus, hypothalamus, and brainstem. Common to both targets, albeit through distinct white matter bundles, were connections to frontal pole, medial temporal lobe, nucleus accumbens, dorsal thalamus, and hypothalamus. CONCLUSIONS Connectivity patterns of these two DBS white matter targets suggest distinct neural networks with areas of overlap in regions implicated in depression and antidepressant response.


PLOS ONE | 2010

The Proneural Molecular Signature Is Enriched in Oligodendrogliomas and Predicts Improved Survival among Diffuse Gliomas

Lee Cooper; David A. Gutman; Qi Long; Brent A. Johnson; Sharath R. Cholleti; Tahsin M. Kurç; Joel H. Saltz; Daniel J. Brat; Carlos S. Moreno

The Cancer Genome Atlas Project (TCGA) has produced an extensive collection of ‘-omic’ data on glioblastoma (GBM), resulting in several key insights on expression signatures. Despite the richness of TCGA GBM data, the absence of lower grade gliomas in this data set prevents analysis genes related to progression and the uncovering of predictive signatures. A complementary dataset exists in the form of the NCI Repository for Molecular Brain Neoplasia Data (Rembrandt), which contains molecular and clinical data for diffuse gliomas across the full spectrum of histologic class and grade. Here we present an investigation of the significance of the TCGA consortiums expression classification when applied to Rembrandt gliomas. We demonstrate that the proneural signature predicts improved clinical outcome among 176 Rembrandt gliomas that includes all histologies and grades, including GBMs (log rank test p = 1.16e-6), but also among 75 grade II and grade III samples (p = 2.65e-4). This gene expression signature was enriched in tumors with oligodendroglioma histology and also predicted improved survival in this tumor type (n = 43, p = 1.25e-4). Thus, expression signatures identified in the TCGA analysis of GBMs also have intrinsic prognostic value for lower grade oligodendrogliomas, and likely represent important differences in tumor biology with implications for treatment and therapy. Integrated DNA and RNA analysis of low-grade and high-grade proneural gliomas identified increased expression and gene amplification of several genes including GLIS3, TGFB2, TNC, AURKA, and VEGFA in proneural GBMs, with corresponding loss of DLL3 and HEY2. Pathway analysis highlights the importance of the Notch and Hedgehog pathways in the proneural subtype. This demonstrates that the expression signatures identified in the TCGA analysis of GBMs also have intrinsic prognostic value for low-grade oligodendrogliomas, and likely represent important differences in tumor biology with implications for treatment and therapy.


Biological Psychiatry | 2001

Neural correlates of maternal separation in rhesus monkeys

James K. Rilling; James T. Winslow; Derek O’Brien; David A. Gutman; John M. Hoffman; Clinton D. Kilts

BACKGROUND The neurobiological basis of stress and anxiety in primates remains poorly understood. In this study, we examined the neural response to a naturalistic social stressor: maternal separation. We used rhesus monkeys as an animal model because of their close phylogenetic affinity with humans. METHODS Six juvenile rhesus monkeys received [(18)F]-fluorodeoxyglucose positron emission tomography scans following 1) a period together with their mothers and again after separation from their mothers 2) with or 3) without visual contact. Image subtraction revealed brain regions that exhibited altered activity during separation. In addition, plasma cortisol concentrations obtained following each condition were tested for correlations with regional brain activity. RESULTS Maternal separation activated the right dorsolateral prefrontal cortex and the right ventral temporal/occipital lobe. There was also decreased activity in left dorsolateral prefrontal cortex associated with separation stress. Correlational analyses demonstrated these activated and deactivated regions to be positively and negatively correlated with cortisol, respectively. Additionally, correlational analyses revealed cortisol-related activation in brainstem areas previously implicated in stress and anxiety. CONCLUSIONS In juvenile rhesus monkeys, the stress of maternal separation is associated with activation in the right dorsolateral prefrontal cortex and ventral temporal/occipital lobes and decreased activity in the left dorsolateral prefrontal cortex.


Physiology & Behavior | 2003

Persistent central nervous system effects of an adverse early environment: clinical and preclinical studies

David A. Gutman; Charles B. Nemeroff

In the search for the underlying biological causes of psychiatric disorders, primary roles for both genetics and environment have been clearly established. A family history of mood or anxiety disorders, representing the genetic component, clearly increases the risk for developing these illnesses in adulthood. The pivotal role of early environmental influences in the pathogenesis of these disorders is also supported by an abundance of both clinical and preclinical data. This review will highlight some of the preclinical and clinical literature that suggests early adverse experience may sensitize corticotropin-releasing factor (CRF) circuitry. The neurobiology of depression highlighting the pathophysiological role of CRF is reviewed. Next, some of the preclinical models of early life stress are discussed; along with a review of the relevant clinical literature that suggests that the functional dysregulation of CRF circuitry in response to early life trauma may contribute to adulthood depression. The discussion will be framed in regards to a stress-diathesis model in which early adverse events result in a sensitized stress axis that predisposes individuals to develop mood disorders.


American Journal of Pathology | 2012

The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma.

Lee A. D. Cooper; David A. Gutman; Candace Chisolm; Christina L. Appin; Jun Kong; Yuan Rong; Tahsin M. Kurç; Erwin G. Van Meir; Joel H. Saltz; Carlos S. Moreno; Daniel J. Brat

The Cancer Genome Atlas (TCGA) project has generated gene expression data that divides glioblastoma (GBM) into four transcriptional classes: proneural, neural, classical, and mesenchymal. Because transcriptional class is only partially explained by underlying genomic alterations, we hypothesize that the tumor microenvironment may also have an impact. In this study, we focused on necrosis and angiogenesis because their presence is both prognostically and biologically significant. These features were quantified in digitized histological images of TCGA GBM frozen section slides that were immediately adjacent to samples used for molecular analysis. Correlating these features with transcriptional data, we found that the mesenchymal transcriptional class was significantly enriched with GBM samples that contained a high degree of necrosis. Furthermore, among 2422 genes that correlated with the degree of necrosis in GBMs, transcription factors known to drive the mesenchymal expression class were most closely related, including C/EBP-β, C/EBP-δ, STAT3, FOSL2, bHLHE40, and RUNX1. Non-mesenchymal GBMs in the TCGA data set were found to become more transcriptionally similar to the mesenchymal class with increasing levels of necrosis. In addition, high expression levels of the master mesenchymal factors C/EBP-β, C/EBP-δ, and STAT3 were associated with a poor prognosis. Strong, specific expression of C/EBP-β and C/EBP-δ by hypoxic, perinecrotic cells in GBM likely account for their tight association with necrosis and may be related to their poor prognosis.


Radiology | 2013

Genomic Mapping and Survival Prediction in Glioblastoma: Molecular Subclassification Strengthened by Hemodynamic Imaging Biomarkers

Rajan Jain; Laila M. Poisson; Jayant Narang; David A. Gutman; Lisa Scarpace; Scott N. Hwang; Chad A. Holder; Max Wintermark; Rivka R. Colen; Justin S. Kirby; John Freymann; Daniel J. Brat; C. Carl Jaffe; Tom Mikkelsen

PURPOSE To correlate tumor blood volume, measured by using dynamic susceptibility contrast material-enhanced T2*-weighted magnetic resonance (MR) perfusion studies, with patient survival and determine its association with molecular subclasses of glioblastoma (GBM). MATERIALS AND METHODS This HIPAA-compliant retrospective study was approved by institutional review board. Fifty patients underwent dynamic susceptibility contrast-enhanced T2*-weighted MR perfusion studies and had gene expression data available from the Cancer Genome Atlas. Relative cerebral blood volume (rCBV) (maximum rCBV [rCBV(max)] and mean rCBV [rCBV(mean)]) of the contrast-enhanced lesion as well as rCBV of the nonenhanced lesion (rCBV(NEL)) were measured. Patients were subclassified according to the Verhaak and Phillips classification schemas, which are based on similarity to defined genomic expression signature. We correlated rCBV measures with the molecular subclasses as well as with patient overall survival by using Cox regression analysis. RESULTS No statistically significant differences were noted for rCBV(max), rCBV(mean) of contrast-enhanced lesion or rCBV(NEL) between the four Verhaak classes or the three Phillips classes. However, increased rCBV measures are associated with poor overall survival in GBM. The rCBV(max) (P = .0131) is the strongest predictor of overall survival regardless of potential confounders or molecular classification. Interestingly, including the Verhaak molecular GBM classification in the survival model clarifies the association of rCBV(mean) with patient overall survival (hazard ratio: 1.46, P = .0212) compared with rCBV(mean) alone (hazard ratio: 1.25, P = .1918). Phillips subclasses are not predictive of overall survival nor do they affect the predictive ability of rCBV measures on overall survival. CONCLUSION The rCBV(max) measurements could be used to predict patient overall survival independent of the molecular subclasses of GBM; however, Verhaak classifiers provided additional information, suggesting that molecular markers could be used in combination with hemodynamic imaging biomarkers in the future.


JAMA Psychiatry | 2013

FKBP5 and Attention Bias for Threat: Associations With Hippocampal Function and Shape

Negar Fani; David A. Gutman; Erin B. Tone; Lynn M. Almli; Kristina B. Mercer; Jennifer S. Davis; Ebony M. Glover; Tanja Jovanovic; Bekh Bradley; Ivo D. Dinov; Alen Zamanyan; Arthur W. Toga; Elisabeth B. Binder; Kerry J. Ressler

IMPORTANCE The FKBP5 gene product regulates glucocorticoid receptor (GR) sensitivity and hypothalamic-pituitary-adrenal axis functioning and has been associated with many stress-related psychiatric disorders. The study of intermediate phenotypes, such as emotion-processing biases and their neural substrates, provides a way to clarify the mechanisms by which FKBP5 dysregulation mediates risk for psychiatric disorders. OBJECTIVE To examine whether allelic variations for a putatively functional single-nucleotide polymorphism associated with FKBP5 gene regulation (rs1360780) would relate differentially to attention bias for threat. this was measured through behavioral response on a dot probe task and hippocampal activation during task performance. Morphologic substrates of differential hippocampal response were also measured. DESIGN Cross-sectional study conducted from 2010 to 2012 examining associations between genotype, behavioral response, and neural response (using functional magnetic resonance imaging [fMRI]) on the dot probe; voxel-based morphometry and global and local shape analyses were used to measure structural differences in hippocampi between genotype groups. SETTING Participants were recruited from primary care clinics of a publicly funded hospital in Atlanta, Georgia. PARTICIPANTS An African American cohort of adults (N = 103) was separated into 2 groups by genotype: one genotype group included carriers of the rs1360780 T allele, which has been associated with increased risk for posttraumatic stress disorder and affective disorders; the other group did not carry this allele. Behavioral data included both sexes (N = 103); the MRI cohort (n = 36) included only women. MAIN OUTCOME MEASURES Behavioral and fMRI (blood oxygen level-dependent) response, voxel-based morphometry, and shape analyses. RESULTS Carriers of the rs1360780 T allele showed an attention bias toward threat compared with individuals without this allele (F1,90 = 5.19, P = .02). Carriers of this allele demonstrated corresponding increases in hippocampal activation and differences in morphology; global and local shape analyses revealed alterations in hippocampal shape for TT/TC compared with CC genotype groups. CONCLUSION Genetic variants of FKBP5 may be associated with risk for stress-related psychiatric disorders via differential effects on hippocampal structure and function, resulting in altered attention response to perceived threat.


Cerebral Cortex | 2013

Process Versus Product in Social Learning: Comparative Diffusion Tensor Imaging of Neural Systems for Action Execution–Observation Matching in Macaques, Chimpanzees, and Humans

Erin Hecht; David A. Gutman; Todd M. Preuss; Mar Sanchez; Lisa A. Parr; James K. Rilling

Social learning varies among primate species. Macaques only copy the product of observed actions, or emulate, while humans and chimpanzees also copy the process, or imitate. In humans, imitation is linked to the mirror system. Here we compare mirror system connectivity across these species using diffusion tensor imaging. In macaques and chimpanzees, the preponderance of this circuitry consists of frontal-temporal connections via the extreme/external capsules. In contrast, humans have more substantial temporal-parietal and frontal-parietal connections via the middle/inferior longitudinal fasciculi and the third branch of the superior longitudinal fasciculus. In chimpanzees and humans, but not in macaques, this circuitry includes connections with inferior temporal cortex. In humans alone, connections with superior parietal cortex were also detected. We suggest a model linking species differences in mirror system connectivity and responsivity with species differences in behavior, including adaptations for imitation and social learning of tool use.


Biological Psychology | 2012

Neural Correlates of Attention Bias to Threat in Post-traumatic Stress Disorder

Negar Fani; Tanja Jovanovic; Timothy D. Ely; Bekh Bradley; David A. Gutman; Erin B. Tone; Kerry J. Ressler

Attentional biases have been proposed to contribute to symptom maintenance in posttraumatic stress disorder (PTSD), although the neural correlates of these processes have not been well defined; this was the goal of the present study. We administered an attention bias task, the dot probe, to a sample of 37 (19 control, 18 PTSD+) traumatized African-American adults during fMRI. Compared to controls, PTSD+ participants demonstrated increased activation in the dorsolateral prefrontal cortex (dlPFC) in response to threat cue trials. In addition, attentional avoidance of threat corresponded with increased ventrolateral prefrontal cortex (vlPFC) and dorsal anterior cingulate cortex (dACC) activation in the PTSD group, a pattern that was not observed in controls. These data provide evidence to suggest that relative increases in dlPFC, dACC and vlPFC activation represent neural markers of attentional bias for threat in individuals with PTSD, reflecting selective disruptions in attentional control and emotion processing networks in this disorder.

Collaboration


Dive into the David A. Gutman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge