Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Hutchins is active.

Publication


Featured researches published by David A. Hutchins.


Nature | 1998

Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime

David A. Hutchins; Kenneth W. Bruland

There is compelling evidence that phytoplankton growth is limited by iron availability in the subarctic Pacific, and equatorial Pacific and Southern oceans. A lack of iron prevents the complete biological utilization of the ambient nitrate and influences phytoplankton species composition in these open-ocean ‘high-nitrate, low-chlorophyll’ (HNLC) regimes. But the effects of iron availability on coastal primary productivity and nutrient biogeochemistry are unknown. Here we present the results of shipboard seawater incubation experiments which demonstrate that phytoplankton are iron-limited in parts of the California coastal upwelling region. As in offshore HNLC regimes, the addition of iron to these nearshore HNLC waters promotes blooms of large chain-forming diatoms. The silicic acid:nitrate (Si:N) uptake ratios in control incubations are two to three times higher than those in iron incubations. Diatoms stressed by a lack of iron should therefore deplete surface waters of silicic acid before nitrate, leading to a secondary silicic acid limitation of the phytoplankton community. Higher Si:cell, Si:C and Si:pigment ratios in diatoms in the control incubations suggest that iron limitation leads to more silicified, faster-sinking diatom biomass. These results raise fundamental questions about the nature of nutrient-limitation interactions in marine ecosystems, palaeoproductivity estimates based on the sedimentary accumulation of biogenic opal, and the controls on carbon export from some of the worlds most productive surface waters.


Nature | 2001

Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean

Sergio A. Sañudo-Wilhelmy; Adam B. Kustka; Christopher J. Gobler; David A. Hutchins; Min Yang; Kamazima M. M. Lwiza; James A. Burns; Douglas G. Capone; John A. Raven; Edward J. Carpenter

Marine fixation of atmospheric nitrogen is believed to be an important source of biologically useful nitrogen to ocean surface waters, stimulating productivity of phytoplankton and so influencing the global carbon cycle. The majority of nitrogen fixation in tropical waters is carried out by the marine cyanobacterium Trichodesmium, which supplies more than half of the new nitrogen used for primary production. Although the factors controlling marine nitrogen fixation remain poorly understood, it has been thought that nitrogen fixation is limited by iron availability in the ocean. This was inferred from the high iron requirement estimated for growth of nitrogen fixing organisms and the higher apparent densities of Trichodesmium where aeolian iron inputs are plentiful. Here we report that nitrogen fixation rates in the central Atlantic appear to be independent of both dissolved iron levels in sea water and iron content in Trichodesmium colonies. Nitrogen fixation was, instead, highly correlated to the phosphorus content of Trichodesmium and was enhanced at higher irradiance. Furthermore, our calculations suggest that the structural iron requirement for the growth of nitrogen-fixing organisms is much lower than previously calculated. Although iron deficiency could still potentially limit growth of nitrogen-fixing organisms in regions of low iron availability—for example, in the subtropical North Pacific Ocean—our observations suggest that marine nitrogen fixation is not solely regulated by iron supply.


Nature | 1999

Competition among marine phytoplankton for different chelated iron species

David A. Hutchins; Amy E. Witter; Alison Butler; George W. Luther

Dissolved-iron availability plays a critical role in controlling phytoplankton growth in the oceans,. The dissolved iron is overwhelmingly (∼99%) bound to organic ligands with a very high affinity for iron, but the origin, chemical identity and biological availability of this organically complexed Fe is largely unknown. The release into sea water of complexes that strongly chelate iron could result from the inducible iron-uptake systems of prokaryotes (siderophore complexes) or by processes such as zooplankton-mediated degradation and release of intracellular material (porphyrin complexes). Here we compare the uptake of siderophore- and porphyrin-complexed 55Fe by phytoplankton, using both cultured organisms and natural assemblages. Eukaryotic phytoplankton efficiently assimilate porphyrin-complexed iron, but this iron source is relatively unavailable to prokaryotic picoplankton (cyanobacteria). In contrast, iron bound to a variety of siderophores is relatively more available to cyanobacteria than to eukaryotes, suggesting that the two plankton groups exhibit fundamentally different iron-uptake strategies. Prokaryotes utilize iron complexed to either endogenous or exogenous siderophores, whereas eukaryotes may rely on a ferrireductase system, that preferentially accesses iron chelated by tetradentate porphyrins, rather than by hexadentate siderophores. Competition between prokaryotes and eukaryotes for organically-bound iron may therefore depend on the chemical nature of available iron complexes, with consequences for ecological niche separation, plankton community size-structure and carbon export in low-iron waters.


Journal of Phycology | 2007

EFFECTS OF INCREASED TEMPERATURE AND CO2 ON PHOTOSYNTHESIS, GROWTH, AND ELEMENTAL RATIOS IN MARINE SYNECHOCOCCUS AND PROCHLOROCOCCUS (CYANOBACTERIA)1

Fei-Xue Fu; Mark E. Warner; Yaohong Zhang; Yuanyuan Feng; David A. Hutchins

Little is known about the combined impacts of future CO2 and temperature increases on the growth and physiology of marine picocyanobacteria. We incubated Synechococcus and Prochlorococcus under present‐day (380 ppm) or predicted year‐2100 CO2 levels (750 ppm), and under normal versus elevated temperatures (+4°C) in semicontinuous cultures. Increased temperature stimulated the cell division rates of Synechococcus but not Prochlorococcus. Doubled CO2 combined with elevated temperature increased maximum chl a–normalized photosynthetic rates of Synechococcus four times relative to controls. Temperature also altered other photosynthetic parameters (α, Φmax, Ek, and ) in Synechococcus, but these changes were not observed for Prochlorococcus. Both increased CO2 and temperature raised the phycobilin and chl a content of Synechococcus, while only elevated temperature increased divinyl chl a in Prochlorococcus. Cellular carbon (C) and nitrogen (N) quotas, but not phosphorus (P) quotas, increased with elevated CO2 in Synechococcus, leading to ∼20% higher C:P and N:P ratios. In contrast, Prochlorococcus elemental composition remained unaffected by CO2, but cell volume and elemental quotas doubled with increasing temperature while maintaining constant stoichiometry. Synechococcus showed a much greater response to CO2 and temperature increases for most parameters measured, compared with Prochlorococcus. Our results suggest that global change could influence the dominance of Synechococcus and Prochlorococcus ecotypes, with likely effects on oligotrophic food‐web structure. However, individual picocyanobacteria strains may respond quite differently to future CO2 and temperature increases, and caution is needed when generalizing their responses to global change in the ocean.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Global declines in oceanic nitrification rates as a consequence of ocean acidification

J. Michael Beman; Cheryl-Emiliane Chow; Andrew L. King; Yuanyuan Feng; Jed A. Fuhrman; Andreas J. Andersson; Nicholas R. Bates; Brian N. Popp; David A. Hutchins

Ocean acidification produced by dissolution of anthropogenic carbon dioxide (CO2) emissions in seawater has profound consequences for marine ecology and biogeochemistry. The oceans have absorbed one-third of CO2 emissions over the past two centuries, altering ocean chemistry, reducing seawater pH, and affecting marine animals and phytoplankton in multiple ways. Microbially mediated ocean biogeochemical processes will be pivotal in determining how the earth system responds to global environmental change; however, how they may be altered by ocean acidification is largely unknown. We show here that microbial nitrification rates decreased in every instance when pH was experimentally reduced (by 0.05–0.14) at multiple locations in the Atlantic and Pacific Oceans. Nitrification is a central process in the nitrogen cycle that produces both the greenhouse gas nitrous oxide and oxidized forms of nitrogen used by phytoplankton and other microorganisms in the sea; at the Bermuda Atlantic Time Series and Hawaii Ocean Time-series sites, experimental acidification decreased ammonia oxidation rates by 38% and 36%. Ammonia oxidation rates were also strongly and inversely correlated with pH along a gradient produced in the oligotrophic Sargasso Sea (r2 = 0.87, P < 0.05). Across all experiments, rates declined by 8–38% in low pH treatments, and the greatest absolute decrease occurred where rates were highest off the California coast. Collectively our results suggest that ocean acidification could reduce nitrification rates by 3–44% within the next few decades, affecting oceanic nitrous oxide production, reducing supplies of oxidized nitrogen in the upper layers of the ocean, and fundamentally altering nitrogen cycling in the sea.


European Journal of Phycology | 2008

Interactive effects of increased pCO 2 , temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae)

Yuanyuan Feng; Mark E. Warner; Yaohong Zhang; Jun Sun; Fei-Xue Fu; Julie M. Rose; David A. Hutchins

We examined the effects of increased temperature, pCO2, and irradiance on a calcifying strain of the marine coccolithophore Emiliania huxleyi in semi-continuous laboratory cultures. Emiliania huxleyi CCMP 371 was cultured in four temperature and pCO2 treatments at both low and high irradiance (50 and 400 µmol photons m−2 s−1): (i) 20°C and 375 ppm CO2 (ambient control); (ii) 20°C and 750 ppm CO2 (high pCO2); (iii) 24°C and 375 ppm CO2 (high temperature); and (iv) 24°C and 750 ppm CO2 (‘greenhouse’). The growth of E. huxleyi was greatly accelerated by elevated temperature at low irradiance. Photosynthesis was significantly promoted by increases in both pCO2 and temperature at both irradiances. Higher cellular C/P ratios were found in the higher CO2 treatments at high irradiance, indicating a reduced requirement for P. The PIC/POC (particulate inorganic to organic carbon) ratio remained constant at low light, regardless of CO2 or temperature conditions. However, both the cellular PIC content and PIC/POC ratio were greatly decreased by elevated irradiance, and were further decreased by increased pCO2 only at high light, indicating a combined effect of CO2 and light on calcification. These results suggest that future trends of CO2 enrichment, sea-surface warming and exposure to higher mean irradiances from intensified stratification will have a large influence on the growth of Emiliania huxleyi, and potentially on the PIC/POC ‘rain ratio’. Our study demonstrates that it is possible to obtain a more complete picture of global change impacts on marine phytoplankton by designing experiments that consider multiple global change variables and their mutual interactions.


PLOS ONE | 2013

Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study

Philip W. Boyd; Tatiana A. Rynearson; Evelyn Armstrong; Fei-Xue Fu; Kendra Hayashi; Zhangxi Hu; David A. Hutchins; Raphael M. Kudela; Elena Litchman; Margaret R. Mulholland; Uta Passow; Robert F. Strzepek; Kerry A. Whittaker; Elizabeth Yu; Mridul K. Thomas

“It takes a village to finish (marine) science these days” Paraphrased from Curtis Huttenhower (the Human Microbiome project) The rapidity and complexity of climate change and its potential effects on ocean biota are challenging how ocean scientists conduct research. One way in which we can begin to better tackle these challenges is to conduct community-wide scientific studies. This study provides physiological datasets fundamental to understanding functional responses of phytoplankton growth rates to temperature. While physiological experiments are not new, our experiments were conducted in many laboratories using agreed upon protocols and 25 strains of eukaryotic and prokaryotic phytoplankton isolated across a wide range of marine environments from polar to tropical, and from nearshore waters to the open ocean. This community-wide approach provides both comprehensive and internally consistent datasets produced over considerably shorter time scales than conventional individual and often uncoordinated lab efforts. Such datasets can be used to parameterise global ocean model projections of environmental change and to provide initial insights into the magnitude of regional biogeographic change in ocean biota in the coming decades. Here, we compare our datasets with a compilation of literature data on phytoplankton growth responses to temperature. A comparison with prior published data suggests that the optimal temperatures of individual species and, to a lesser degree, thermal niches were similar across studies. However, a comparison of the maximum growth rate across studies revealed significant departures between this and previously collected datasets, which may be due to differences in the cultured isolates, temporal changes in the clonal isolates in cultures, and/or differences in culture conditions. Such methodological differences mean that using particular trait measurements from the prior literature might introduce unknown errors and bias into modelling projections. Using our community-wide approach we can reduce such protocol-driven variability in culture studies, and can begin to address more complex issues such as the effect of multiple environmental drivers on ocean biota.


Marine Chemistry | 2000

Determination of conditional stability constants and kinetic constants for strong model Fe-binding ligands in seawater

Amy E. Witter; David A. Hutchins; Alison Butler; George W. Luther

Abstract Conditional stability constants and the rates of formation and dissociation for Fe3+ complexation with nine model ligands were measured in chelexed, photo-oxidized seawater. The ligands were chosen to represent Fe-binding organic functional groups that are present in seawater as a result of siderophore production by marine prokaryotes, or as a result of release during cell lysis or grazing. Four Fe-chelating moieties were studied including: tetrapyrrole ligands (i.e., phaeophytin and protoporphyrin IX (and its dimethyl ester); a terrestrial catecholate siderophore (i.e., enterobactin); terrestrial hydroxamate siderophores (i.e., ferrichrome and desferrioxamine) and marine siderophores containing a mixed functional moiety: β-hydroxyaspartate/catecholate (i.e., Alterobactin A) and the bis-catecholate siderophore (i.e., Alterobactin B). Also considered were the Fe storage protein apoferritin, and the Fe-complexing ligand inositol hexaphosphate (phytic acid). The competitive ligand 1-nitroso-2-naphthol (1N2N) was used with cathodic stripping voltammetry (CLE-CSV) to determine conditional stability constants for these FeL complexes. Conditional stability constants (log KFe3+L) for the nine ligands ranged from log KFe3+L=21.6 to greater than 24.0, remarkably close to the values that have been reported for natural ligands in seawater. Formation rate constants, kf, for inorganic Fe′ complexation by these Fe-binding ligands varied by a factor of 21 and ranged from 0.93×105 M−1 s−1 (apoferritin) to 19.6×105 (desferrioxamine). Dissociation rate constants, kd, of the model FeL complexes varied by a factor of 316 and ranged from 0.05×10−6 s−1 (ferrichrome) to 15.8×10−6 s−1 (enterobactin). Kinetic measurements showed log KFe3+L values ranging between 20.8 and 22.9. Results suggest that the CLE-CSV method cannot distinguish between different organic moieties that may be present in seawater, because the measured conditional stability constants do not vary in a systematic manner with Fe-binding ligand structure. The dissociation rate constant does provide structural information on the organic compounds binding Fe3+ in seawater, and its variation for model ligands appears to correlate with changes in ligand structure.


Applied and Environmental Microbiology | 2000

Limitation of Bacterial Growth by Dissolved Organic Matter and Iron in the Southern Ocean

Matthew J. Church; David A. Hutchins; Hugh W. Ducklow

ABSTRACT The importance of resource limitation in controlling bacterial growth in the high-nutrient, low-chlorophyll (HNLC) region of the Southern Ocean was experimentally determined during February and March 1998. Organic- and inorganic-nutrient enrichment experiments were performed between 42°S and 55°S along 141°E. Bacterial abundance, mean cell volume, and [3H]thymidine and [3H]leucine incorporation were measured during 4- to 5-day incubations. Bacterial biomass, production, and rates of growth all responded to organic enrichments in three of the four experiments. These results indicate that bacterial growth was constrained primarily by the availability of dissolved organic matter. Bacterial growth in the subtropical front, subantarctic zone, and subantarctic front responded most favorably to additions of dissolved free amino acids or glucose plus ammonium. Bacterial growth in these regions may be limited by input of both organic matter and reduced nitrogen. Unlike similar experimental results in other HNLC regions (subarctic and equatorial Pacific), growth stimulation of bacteria in the Southern Ocean resulted in significant biomass accumulation, apparently by stimulating bacterial growth in excess of removal processes. Bacterial growth was relatively unchanged by additions of iron alone; however, additions of glucose plus iron resulted in substantial increases in rates of bacterial growth and biomass accumulation. These results imply that bacterial growth efficiency and nitrogen utilization may be partly constrained by iron availability in the HNLC Southern Ocean.


Nature Climate Change | 2012

Rising CO2 and increased light exposure synergistically reduce marine primary productivity

Kunshan Gao; Juntian Xu; Guang Gao; Yahe Li; David A. Hutchins; Bangqin Huang; Lei Wang; Ying Zheng; Peng Jin; Xiaoni Cai; Donat-Peter Häder; Wei Li; Kai Xu; Nana Liu; Ulf Riebesell

Carbon dioxide and light are two major prerequisites of photosynthesis. Rising CO2 levels in oceanic surface waters in combination with ample light supply are therefore often considered stimulatory to marine primary production(1-3). Here we show that the combination of an increase in both CO2 and light exposure negatively impacts photosynthesis and growth of marine primary producers. When exposed to CO2 concentrations projected for the end of this century(4), natural phytoplankton assemblages of the South China Sea responded with decreased primary production and increased light stress at light intensities representative of the upper surface layer. The phytoplankton community shifted away from diatoms, the dominant phytoplankton group during our field campaigns. To examine the underlying mechanisms of the observed responses, we grew diatoms at different CO2 concentrations and under varying levels (5-100%) of solar radiation experienced by the phytoplankton at different depths of the euphotic zone. Above 22-36% of incident surface irradiance, growth rates in the high-CO2-grown cells were inversely related to light levels and exhibited reduced thresholds at which light becomes inhibitory. Future shoaling of upper-mixed-layer depths will expose phytoplankton to increased mean light intensities(5). In combination with rising CO2 levels, this may cause a widespread decline in marine primary production and a community shift away from diatoms, the main algal group that supports higher trophic levels and carbon export in the ocean.

Collaboration


Dive into the David A. Hutchins's collaboration.

Top Co-Authors

Avatar

Fei-Xue Fu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio A. Sañudo-Wilhelmy

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge