Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A K Boyd is active.

Publication


Featured researches published by David A K Boyd.


Journal of Virology | 2004

Generation and Characterization of DNA Vaccines Targeting the Nucleocapsid Protein of Severe Acute Respiratory Syndrome Coronavirus

Tae Woo Kim; Jin Hyup Lee; Chien Fu Hung; Shiwen Peng; Richard Roden; Mei Cheng Wang; Raphael P. Viscidi; Ya Chea Tsai; Liangmei He; Pei-Jer Chen; David A K Boyd; T. C. Wu

ABSTRACT Severe acute respiratory syndrome (SARS) is a serious threat to public health and the economy on a global scale. The SARS coronavirus (SARS-CoV) has been identified as the etiological agent for SARS. Thus, vaccination against SARS-CoV may represent an effective approach to controlling SARS. DNA vaccines are an attractive approach for SARS vaccine development, as they offer many advantages over conventional vaccines, including stability, simplicity, and safety. Our investigators have previously shown that DNA vaccination with antigen linked to calreticulin (CRT) dramatically enhances major histocompatibility complex class I presentation of linked antigen to CD8+ T cells. In this study, we have employed this CRT-based enhancement strategy to create effective DNA vaccines using SARS-CoV nucleocapsid (N) protein as a target antigen. Vaccination with naked CRT/N DNA generated the most potent N-specific humoral and T-cell-mediated immune responses in vaccinated C57BL/6 mice among all of the DNA constructs tested. Furthermore, mice vaccinated with CRT/N DNA were capable of significantly reducing the titer of challenging vaccinia virus expressing the N protein of the SARS virus. These results show that a DNA vaccine encoding CRT linked to a SARS-CoV antigen is capable of generating strong N-specific humoral and cellular immunity and may potentially be useful for control of infection with SARS-CoV.


Journal of Virology | 2004

Development of a DNA Vaccine Targeting Human Papillomavirus Type 16 Oncoprotein E6

Shiwen Peng; Hongxiu Ji; Cornelia L. Trimble; Liangmei He; Ya Chea Tsai; Jessica Yeatermeyer; David A K Boyd; Chien Fu Hung; T. C. Wu

ABSTRACT Human papillomavirus (HPV), particularly type 16 (HPV-16), is present in more than 99% of cervical cancers. The HPV oncoproteins E6 and E7 are constantly expressed and therefore represent ideal targets for HPV vaccine development. We previously developed DNA vaccines encoding calreticulin (CRT) linked to HPV-16 E7 and generated potent E7-specific CD8+ T-cell immune responses and antitumor effects against an E7-expressing tumor. Since vaccines targeting E6 also represent an important strategy for controlling HPV-associated lesions, we developed a DNA vaccine encoding CRT linked to E6 (CRT/E6). Our results indicated that the CRT/E6 DNA vaccine, but not a wild-type E6 DNA vaccine, generated significant E6-specific CD8+ T-cell immune responses in vaccinated mice. Mapping of the immunodominant epitope of E6 revealed that an E6 peptide comprising amino acids (aa) 48 to 57 (E6 aa48-57), presented by H-2Kb, is the optimal peptide and that the region of E6 comprising aa 50 to 57 represents the minimal core sequence required for activating E6-specific CD8+ T lymphocytes. We also demonstrated that E6 aa48-57 contains cytotoxic T-lymphocyte epitopes naturally presented by E6-expressing TC-1 cells. Vaccination with a CRT/E6 but not a CRT/mtE6 (lacking aa 50 to 57 of E6) DNA vaccine could protect vaccinated mice from challenge with E6-expressing TC-1 tumors. Thus, our data indicate that E6 aa48-57 contains the immunodominant epitope and that a CRT/E6 DNA vaccine may be useful for control of HPV infection and HPV-associated lesions.


Gene Therapy | 2004

Comparison of HPV DNA vaccines employing intracellular targeting strategies

J W Kim; C-F Hung; Jeremy Juang; Liangmei He; T Woo Kim; D K Armstrong; Sara I. Pai; P-J Chen; C-T Lin; David A K Boyd; T. C. Wu

Intradermal vaccination via gene gun efficiently delivers DNA vaccines into dendritic cells (DCs) of the skin, resulting in the activation and priming of antigen-specific T cells in vivo. In the context of DNA vaccines, we previously used the gene gun approach to test several intracellular targeting strategies that are able to route a model antigen, such as the human papillomavirus type-16 (HPV-16) E7, to desired subcellular compartments in order to enhance antigen processing and presentation to T cells. These strategies include the use of the sorting signal of lysosome-associated membrane protein (LAMP-1), Mycobacterium tuberculosis heat-shock protein 70 (HSP70), calreticulin (CRT) and the translocation domain (dII) of Pseudomonas aeruginosa exotoxin A (ETA). Vaccination with DNA vaccines encoding E7 antigen linked to any of these molecules all led to a significant enhancement of E7-specific CD8+ T-cell immune responses and strong antitumor effects against an E7-expressing tumor, TC-1. However, we were interested in identifying the most potent DNA vaccine for our future clinical trials. Thus, we performed a series of experiments to directly compare the potency of the various DNA vaccines. Among the DNA vaccines we tested, we found that vaccination with pcDNA3-CRT/E7 generated the highest number of E7-specific CD8+ T cells and potent long-term protection and treatment effects against E7-expressing tumors in mice. Interestingly, we observed that pcDNA3-CRT/E7 is also capable of protecting against an E7-expressing tumor with downregulated MHC class I expression, a common feature associated with most HPV-associated cervical cancers. Our data suggest that the DNA vaccine linking CRT to E7 (CRT/E7) may be a suitable candidate for human trials for the control of HPV infections and HPV-associated lesions.


Journal of Immunology | 2003

Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life with intracellular targeting strategies

Tae Woo Kim; Chien Fu Hung; David A K Boyd; Jeremy Juang; Liangmei He; Jeong Won Kim; J. Marie Hardwick; T. C. Wu

We have recently shown that intradermal coadministration of DNA encoding Ag with DNA encoding inhibitors of apoptosis, including Bcl-xL, prolongs dendritic cell (DC) life and thereby enhances the potency of DNA vaccines in vivo. We have also demonstrated that DNA vaccines targeting Ag to subcellular compartments, using proteins such as Mycobacterium tuberculosis heat shock protein 70, calreticulin, or the sorting signal of the lysosome-associated membrane protein type 1 (LAMP-1), enhanced DNA vaccine potency. In this study, we reasoned that the combination of a strategy to prolong DC life with intracellular targeting strategies might produce a more effective DNA vaccine against human papillomavirus E7. We showed that coadministration of DNA encoding Bcl-xL with DNA encoding E7/heat shock protein 70, calreticulin/E7, or Sig/E7/LAMP-1 resulted in further enhancement of the E7-specific CD8+ T cell response for all three constructs. Of these strategies, mice vaccinated with Sig/E7/LAMP-1 DNA mixed with Bcl-xL DNA showed the greatest increase in E7-specific CD8+ T cells (∼13-fold increase). This combination of strategies resulted in increased CD8+ T cell functional avidity, an increased E7-specific CD4+ Th1 cell response, enhanced tumor treatment ability, and stronger long-term tumor protection when compared with mice vaccinated without Bcl-xL DNA. Therefore, DNA vaccines that combine strategies to enhance intracellular Ag processing and prolong DC life have potential clinical implications for control of viral infection and neoplasia.


Gene Therapy | 2005

Cancer immunotherapy using a DNA vaccine encoding a single-chain trimer of MHC class I linked to an HPV-16 E6 immunodominant CTL epitope

C.-H. Huang; Shiwen Peng; Liangmei He; Ya-Chea Tsai; David A K Boyd; T. H. Hansen; T. C. Wu; Chien Fu Hung

The potency of DNA vaccines may be affected by the efficiency of intracellular processing and MHC class I presentation of encoded antigens. Since a single-chain trimer (SCT) composed of peptide, β2-microglobulin (β2m), and MHC class I heavy chain has been shown to bypass antigen processing and lead to stable presentation of peptides, we investigated the efficacy of a DNA vaccine encoding a SCT composed of an immunodominant CTL epitope of human papillomavirus type 16 (HPV-16) E6 antigen, β2m, and H-2Kb MHC class I heavy chain (pIRES-E6-β2m-Kb). Transfection of 293 cells with pIRES-E6-β2m-Kb can bypass antigen processing and lead to stable presentation of E6 peptide. Furthermore, C57BL/6 mice vaccinated with pIRES-E6-β2m-Kb exhibited significantly increased E6 peptide-specific CD8+ T-cell immune responses compared to mice vaccinated with DNA encoding wild-type E6. Most importantly, 100% of mice vaccinated with pIRES-E6-β2m-Kb DNA were protected against a lethal challenge of E6-expressing TC-1 tumor cells. In contrast, all mice vaccinated with wild-type E6 DNA or control plasmid DNA grew tumors. Our data indicate that a DNA vaccine encoding a SCT can lead to stable enhanced MHC class I presentation of encoded antigenic peptide and may be useful for improving DNA vaccine potency to control tumors or infectious diseases.


Cancer Research | 2004

Enhancement of DNA vaccine potency by coadministration of a tumor antigen gene and DNA encoding serine protease inhibitor-6.

Tae Woo Kim; Chien Fu Hung; David A K Boyd; Liangmei He; Cheng Tao Lin; Dion Kaiserman; Phillip I. Bird; T. C. Wu

Serine protease inhibitor 6 (SPI-6), also called Serpinb9, inhibits granzyme B and thus may provide a method for delaying apoptotic cell death in dendritic cells. We have previously enhanced DNA vaccine potency by targeting antigen to MHC antigen presentation pathways, using proteins such as Mycobacterium tuberculosis heat shock protein 70, calreticulin, domain II of Pseudomonas aeruginosa exotoxin A, or the sorting signal of the lysosome-associated membrane protein type 1. In this study, we explored intradermal coadministration of DNA encoding SPI-6 with DNA constructs encoding human papillomavirus type 16 E7 linked to these intracellular targeting molecules for its ability to generate E7-specific CD8+ T-cell immune responses and E7-specific antitumor effects. This combination of strategies resulted in significantly increased E7-specific CD8+ T-cell and CD4+ Th1-cell responses, enhanced tumor treatment ability, and stronger tumor protection when compared with vaccination without SPI-6. Among these targeting strategies tested, mice vaccinated with Sig/E7/lysosome-associated membrane protein type 1 mixed with SPI-6 showed the greatest fold increase in E7-specific CD8+ T cells (∼5-fold). Vaccination with a nonfunctional mutant of SPI-6 did not result in immune enhancement, indicating that enhancement was dependent on the antiapoptotic function of SPI-6. Our results suggest that DNA vaccines combining strategies that enhance MHC class I and II antigen processing with SPI-6 have potential clinical implications for control of viral infection and neoplasia.


Human Gene Therapy | 2004

Vaccination with a DNA Vaccine Encoding Herpes Simplex Virus Type 1 VP22 Linked to Antigen Generates Long-Term Antigen-Specific CD8-Positive Memory T Cells and Protective Immunity

Tae Woo Kim; Chien Fu Hung; Jeong Won Kim; Jeremy Juang; Pei-Jer Chen; Liangmei He; David A K Boyd; T. C. Wu

Intradermal vaccination with DNA encoding herpes simplex virus type 1 (HSV-1) VP22 linked to antigen leads to spread of antigen within the epithelium and results in enhanced antigen-specific CD8+ T cell immune responses in vaccinated mice. In this study, we characterized the number of antigen-expressing dendritic cells (DCs) in the draining lymph nodes of vaccinated mice and determined whether the linkage of VP22 to antigen would influence the ability of antigen-expressing DCs to activate antigen-specific CD8+ T cells in vivo. Vaccination with DNA encoding HSV-1 VP22 linked to human papillomavirus type 16 E7 antigen generated more antigen-expressing DCs in the draining lymph nodes of vaccinated mice than E7 alone. In addition, the linkage of VP22 to E7 improved the MHC class I presentation of E7 in transfected DCs and led to enhanced activation of E7-specific CD8+ T cells. We also observed that vaccination with DNA encoding VP22 linked to E7 generated more E7-specific CD8+ memory T cells, and enhanced long-term protective antitumor immunity against an E7-expressing tumor in vaccinated mice compared with vaccination with DNA encoding E7 alone. Thus, administration of DNA encoding VP22 linked to antigen represents a plausible approach for the development of protective DNA vaccines.


Gene Therapy | 2006

Characterization of HLA-A2-restricted HPV-16 E7-specific CD8(+) T-cell immune responses induced by DNA vaccines in HLA-A2 transgenic mice.

Shiwen Peng; Cornelia L. Trimble; Liangmei He; Ya-Chea Tsai; C.-T. Lin; David A K Boyd; Drew M. Pardoll; Chien Fu Hung; T. C. Wu

We have recently demonstrated that linkage of DNA-encoding calreticulin to DNA-encoding human papillomavirus-16 E7 antigen strongly enhances the efficacy of DNA vaccines against E7-expressing tumors in animal models. In this study, as a prelude to clinical translation, we characterized the ability of DNA-encoding calreticulin linked to DNA-encoding E7 antigen to generate HLA-A2-restricted E7-specific CD8+ T-cell responses in HLA-A2 (AAD) transgenic mice, as well as antitumor effects against an E7+ HLA-A2+ tumor cell line, TC-1/A2. Our results show that while vaccination with CRT/E7 DNA generates strong H-2Db-restricted E7 (amino acid (aa)49–57)-specific CD8+ T-cell immune responses in both C57BL/6 and HLA-A2 (AAD) transgenic mice, no such responses were generated to HLA-A2-restricted epitopes in either type of mouse. In contrast, vaccination with DNA-encoding calreticulin linked to DNA encoding a mutant version of E7 with a deleted aa49–57 epitope leads to the generation of an HLA-A2-restricted E7 (aa11–20)-specific CTL response in HLA-A2 (AAD) transgenic mice. More importantly, vaccination with CRT/mtE7 (del aa49–57) DNA protects against a lethal challenge with TC-1/A2 tumor cells in HLA-A2 (AAD) transgenic mice. Furthermore, our in vitro studies demonstrate that the presence of the E7 (aa49–57) epitope does not suppress presentation of the HLA-A2-restricted E7 (aa11–20) epitope through MHC class I molecules. Thus, the predominant E7 aa49–57-specific CD8+ T-cell immune response in HLA-A2 transgenic mice vaccinated with CRT/E7 is likely due to preferred expansion of E7 aa49–57-specific CD8+ T cells in vaccinated mice. These results highlight the importance of epitope immunodominance in the evaluation of immune responses in HLA-A2 (AAD) transgenic mice.


Journal of Biomedical Science | 2004

A DNA Vaccine Co-Expressing Antigen and an Anti-Apoptotic Molecule Further Enhances the Antigen-Specific CD8+ T-Cell Immune Response

Tae Woo Kim; Chien Fu Hung; Meizi Zheng; David A K Boyd; Liangmei He; Sara I. Pai; T. C. Wu

We have shown that DNA encoding the anti-apoptotic protein Bcl-xL enhances E7-specific CD8+ T-cell responses and DNA encoding pro-apoptotic protein caspase-3 suppresses E7-specific CD8+ T-cell responses when co-administered intradermally via gene gun with DNA encoding human papillomavirus type 16 (HPV-16) E7 linked to the sorting signal of the lysosome-associated membrane protein type 1 (LAMP-1). E7 and LAMP-1 are linked to form the chimeric Sig/E7/LAMP-1 (SEL). Because co-administration does not ensure delivery of both constructs to a single cell, we used pVITRO, a mammalian expression vector with double promoters, to ensure expression of both molecules in the same cell. We vaccinated C57BL/6 mice with pVITRO-SEL-Bcl-xL, pVITRO-SEL-mtBcl-xL, pVITRO-SEL, or pVITRO-SEL-caspase-3 intradermally via gene gun and intramuscularly via injection. We demonstrated that vaccination with pVITRO achieved similar results to a co-administration strategy: that Bcl-xL enhanced the E7-specific CTL response and caspase-3 suppressed the E7-specific CTL response. In addition, we found intradermal vaccination elicited significantly higher numbers of E7-specific CD8+ T cells compared to intramuscular vaccination. Thus, intradermal vaccination with a pVITRO vector combining an anti-apoptotic strategy (Bcl-xL) and an intracellular targeting strategy (SEL) further enhances the E7-specific CD8+ T-cell response and guarantees co-expression of both encoded molecules in transfected cells.


Journal of Virology | 2016

Structure/Function Studies Involving the V3 Region of the HIV-1 Envelope Delineate Multiple Factors That Affect Neutralization Sensitivity

Susan Zolla-Pazner; Sandra Cohen; David A K Boyd; Xiang-Peng Kong; Michael S. Seaman; Michel C. Nussenzweig; Florian Klein; Julie Overbaugh; Max Totrov

ABSTRACT Antibodies (Abs) specific for the V3 loop of the HIV-1 gp120 envelope neutralize most tier 1 and many tier 2 viruses and are present in essentially all HIV-infected individuals as well as immunized humans and animals. Vaccine-induced V3 Abs are associated with reduced HIV infection rates in humans and affect the nature of transmitted viruses in infected vaccinees, despite the fact that V3 is often occluded in the envelope trimer. Here, we link structural and experimental data showing how conformational alterations of the envelope trimer render viruses exceptionally sensitive to V3 Abs. The experiments interrogated the neutralization sensitivity of pseudoviruses with single amino acid mutations in various regions of gp120 that were predicted to alter packing of the V3 loop in the Env trimer. The results indicate that the V3 loop is metastable in the envelope trimer on the virion surface, flickering between states in which V3 is either occluded or available for binding to chemokine receptors (leading to infection) and to V3 Abs (leading to virus neutralization). The spring-loaded V3 in the envelope trimer is easily released by disruption of the stability of the V3 pocket in the unliganded trimer or disruption of favorable V3/pocket interactions. Formation of the V3 pocket requires appropriate positioning of the V1V2 domain, which is, in turn, dependent on the conformation of the bridging sheet and on the stability of the V1V2 B-C strand-connecting loop. IMPORTANCE The levels of antibodies to the third variable region (V3) of the HIV envelope protein correlate with reduced HIV infection rates. Previous studies showed that V3 is often occluded, as it sits in a pocket of the envelope trimer on the surface of virions; however, the trimer is flexible, allowing occluded portions of the envelope (like V3) to flicker into an exposed position that binds antibodies. Here we provide a systematic interrogation of mechanisms by which single amino acid changes in various regions of gp120 (i) render viruses sensitive to neutralization by V3 antibodies, (ii) result in altered packing of the V3 loop, and (iii) activate an open conformation that exposes V3 to the effects of V3 Abs. Taken together, these and previous studies explain how V3 antibodies can protect against HIV-1 infection and why they should be one of the targets of vaccine-induced antibodies.

Collaboration


Dive into the David A K Boyd's collaboration.

Top Co-Authors

Avatar

T. C. Wu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Liangmei He

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Chien Fu Hung

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy Juang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Shiwen Peng

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Chien Fu Hung

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Pei-Jer Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge