Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Mangus is active.

Publication


Featured researches published by David A. Mangus.


Nature | 2004

A faux 3′-UTR promotes aberrant termination and triggers nonsense- mediated mRNA decay

Nadia Amrani; Robin Ganesan; Stephanie Kervestin; David A. Mangus; Shubhendu Ghosh; Allan Jacobson

Nonsense-mediated messenger RNA decay (NMD) is triggered by premature translation termination, but the features distinguishing premature from normal termination are unknown. One model for NMD suggests that decay-inducing factors bound to mRNAs during early processing events are routinely removed by elongating ribosomes but remain associated with mRNAs when termination is premature, triggering rapid turnover. Recent experiments challenge this notion and suggest a model that posits that mRNA decay is activated by the intrinsically aberrant nature of premature termination. Here we use a primer extension inhibition (toeprinting) assay to delineate ribosome positioning and find that premature translation termination in yeast extracts is indeed aberrant. Ribosomes encountering premature UAA or UGA codons in the CAN1 mRNA fail to release and, instead, migrate to upstream AUGs. This anomaly depends on prior nonsense codon recognition and is eliminated in extracts derived from cells lacking the principal NMD factor, Upf1p, or by flanking the nonsense codon with a normal 3′-untranslated region (UTR). Tethered poly(A)-binding protein (Pab1p), used as a mimic of a normal 3′-UTR, recruits the termination factor Sup35p (eRF3) and stabilizes nonsense-containing mRNAs. These findings indicate that efficient termination and mRNA stability are dependent on a properly configured 3′-UTR.


Molecular and Cellular Biology | 1998

Pbp1p, a Factor Interacting with Saccharomyces cerevisiae Poly(A)-Binding Protein, Regulates Polyadenylation

David A. Mangus; Nadia Amrani; Allan Jacobson

ABSTRACT The poly(A) tail of an mRNA is believed to influence the initiation of translation, and the rate at which the poly(A) tail is removed is thought to determine how fast an mRNA is degraded. One key factor associated with this 3′-end structure is the poly(A)-binding protein (Pab1p) encoded by the PAB1 gene inSaccharomyces cerevisiae. In an effort to learn more about the functional role of this protein, we used a two-hybrid screen to determine the factor(s) with which it interacts. We identified five genes encoding factors that specifically interact with the carboxy terminus of Pab1p. Of a total of 44 specific clones identified,PBP1 (for Pab1p-binding protein) was isolated 38 times. Of the putative interacting genes examined, PBP1 promoted the highest level of resistance to 3-aminotriazole (>100 mM) in constructs in which HIS3 was used as a reporter. We determined that a fraction of Pbp1p cosediments with polysomes in sucrose gradients and that its distribution is very similar to that of Pab1p. Disruption ofPBP1 showed that it is not essential for viability but can suppress the lethality associated with a PAB1 deletion. The suppression of pab1Δ by pbp1Δ appears to be different from that mediated by other pab1 suppressors, since disruption of PBP1 does not alter translation rates, affect accumulation of ribosomal subunits, change mRNA poly(A) tail lengths, or result in a defect in mRNA decay. Rather, Pbp1p appears to function in the nucleus to promote proper polyadenylation. In the absence of Pbp1p, 3′ termini of pre-mRNAs are properly cleaved but lack full-length poly(A) tails. These effects suggest that Pbp1p may act to repress the ability of Pab1p to negatively regulate polyadenylation.


Molecular and Cellular Biology | 2000

Upf1p control of nonsense mRNA translation is regulated by Nmd2p and Upf3p.

Alan Baer Maderazo; Feng He; David A. Mangus; Allan Jacobson

ABSTRACT Upf1p, Nmd2p, and Upf3p regulate the degradation of yeast mRNAs that contain premature translation termination codons. These proteins also appear to regulate the fidelity of termination, allowing translational suppression in their absence. Here, we have devised a novel quantitative assay for translational suppression, based on a nonsense allele of the CAN1 gene (can1-100), and used it to determine the regulatory roles of theUPF/NMD gene products. Deletion of UPF1,NMD2, or UPF3 stabilized thecan1-100 transcript and promoted can1-100nonsense suppression. Changes in mRNA levels were not the basis of suppression, however, since deletion of DCP1 orXRN1 or high-copy-number can1-100 expression in wild-type cells caused an increase in mRNA abundance similar to that obtained in upf/nmd cells but did not result in comparable suppression. can1-100 suppression was highest in cells harboring a deletion of UPF1, and overexpression ofUPF1 in cells with individual or multipleupf/nmd mutations lowered the level of nonsense suppression without affecting the abundance of the can1-100 mRNA. Our findings indicate that Nmd2p and Upf3p regulate Upf1p activity and that Upf1p plays a critical role in promoting termination fidelity that is independent of its role in regulating mRNA decay. Consistent with these relationships, Upf1p, Nmd2p, and Upf3p were shown to be present at 1,600, 160, and 80 molecules per cell, levels that underscored the importance of Upf1p but minimized the likelihood that these proteins were associated with all ribosomes or that they functioned as a stoichiometric complex.


Molecular and Cellular Biology | 2001

Absence of Dbp2p Alters Both Nonsense-Mediated mRNA Decay and rRNA Processing

Andrew T. Bond; David A. Mangus; Feng He; Allan Jacobson

ABSTRACT Dbp2p, a member of the large family of DEAD-box proteins and a yeast homolog of human p68, was shown to interact with Upf1p, an essential component of the nonsense-mediated mRNA decay pathway. Dbp2p:Upf1p interaction occurs within a large conserved region in the middle of Upf1p that is largely distinct from its Nmd2p and Sup35/45p interaction domains. Deletion of DBP2, or point mutations within its highly conserved DEAD-box motifs, increased the abundance of nonsense-containing transcripts, leading us to conclude that Dbp2p also functions in the nonsense-mediated mRNA decay pathway. Dbp2p, like Upf1p, acts before or at decapping, is predominantly cytoplasmic, and associates with polyribosomes. Interestingly, Dbp2p also plays an important role in rRNA processing. In dbp2Δ cells, polyribosome profiles are deficient in free 60S subunits and the mature 25S rRNA is greatly reduced. The ribosome biogenesis phenotype, but not the mRNA decay function, of dbp2Δ cells can be complemented by the human p68 gene. We propose a unifying model in which Dbp2p affects both nonsense-mediated mRNA decay and rRNA processing by altering rRNA structure, allowing specific processing events in one instance and facilitating dissociation of the translation termination complex in the other.


Molecular and Cellular Biology | 2004

Positive and Negative Regulation of Poly(A) Nuclease

David A. Mangus; Matthew Evans; Nathan S. Agrin; Mandy M. Smith; Preetam Gongidi; Allan Jacobson

ABSTRACT PAN, a yeast poly(A) nuclease, plays an important nuclear role in the posttranscriptional maturation of mRNA poly(A) tails. The activity of this enzyme is dependent on its Pan2p and Pan3p subunits, as well as the presence of poly(A)-binding protein (Pab1p). We have identified and characterized the associated network of factors controlling the maturation of mRNA poly(A) tails in yeast and defined its relevant protein-protein interactions. Pan3p, a positive regulator of PAN activity, interacts with Pab1p, thus providing substrate specificity for this nuclease. Pab1p also regulates poly(A) tail trimming by interacting with Pbp1p, a factor that appears to negatively regulate PAN. Pan3p and Pbp1p both interact with themselves and with the C terminus of Pab1p. However, the domains required for Pan3p and Pbp1p binding on Pab1p are distinct. Single amino acid changes that disrupt Pan3p interaction with Pab1p have been identified and define a binding pocket in helices 2 and 3 of Pab1ps carboxy terminus. The importance of these amino acids for Pab1p-Pan3p interaction, and poly(A) tail regulation, is underscored by experiments demonstrating that strains harboring substitutions in these residues accumulate mRNAs with long poly(A) tails in vivo.


Journal of Biological Chemistry | 2007

Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein.

Nadeem Siddiqui; David A. Mangus; Tsung Cheng Chang; Jeanne Marie Palermino; Ann Bin Shyu; Kalle Gehring

The poly(A)-binding protein (PABP) is an essential protein found in all eukaryotes and is involved in an extensive range of cellular functions, including translation, mRNA metabolism, and mRNA export. Its C-terminal region contains a peptide-interacting PABC domain that recruits proteins containing a highly specific PAM-2 sequence motif to the messenger ribonucleoprotein complex. In humans, these proteins, including Paip1, Paip2, eRF3 (eukaryotic release factor 3), Ataxin-2, and Tob2, are all found to regulate translation through varying mechanisms. The following reports poly(A) nuclease (PAN) as a PABC-interacting partner in both yeast and humans. Their interaction is mediated by a PAM-2 motif identified within the PAN3 subunit. This site was identified in various fungal and animal species suggesting that the interaction is conserved throughout evolution. Our results indicate that PABP is directly involved in recruiting a deadenylase to the messenger ribonucleoprotein complex. This demonstrates a novel role for the PABC domain in mRNA metabolic processes and gives further insight into the function of PABP in mRNA maturation, export, and turnover.


Molecular and Cellular Biology | 2004

Identification of Factors Regulating Poly(A) Tail Synthesis and Maturation

David A. Mangus; Mandy M. Smith; Jennifer M. McSweeney; Allan Jacobson

ABSTRACT Posttranscriptional maturation of the 3′ end of eukaryotic pre-mRNAs occurs as a three-step pathway involving site-specific cleavage, polymerization of a poly(A) tail, and trimming of the newly synthesized tail to its mature length. While most of the factors essential for catalyzing these reactions have been identified, those that regulate them remain to be characterized. Previously, we demonstrated that the yeast protein Pbp1p associates with poly(A)-binding protein (Pab1p) and controls the extent of mRNA polyadenylation. To further elucidate the function of Pbp1p, we conducted a two-hybrid screen to identify factors with which it interacts. Five genes encoding putative Pbp1p-interacting proteins were identified, including (i) FIR1/PIP1 and UFD1/PIP3, genes encoding factors previously implicated in mRNA 3′-end processing; (ii) PBP1 itself, confirming directed two-hybrid results and suggesting that Pbp1p can multimerize; (iii) DIG1, encoding a mitogen-activated protein kinase-associated protein; and (iv) PBP4 (YDL053C), a previously uncharacterized gene. In vitro polyadenylation reactions utilizing extracts derived from fir1Δ and pbp1Δ cells and from cells lacking the Fir1p interactor, Ref2p, demonstrated that Pbp1p, Fir1p, and Ref2p are all required for the formation of a normal-length poly(A) tail on precleaved CYC1 pre-mRNA. Kinetic analyses of the respective polyadenylation reactions indicated that Pbp1p is a negative regulator of poly(A) nuclease (PAN) activity and that Fir1p and Ref2p are, respectively, a positive regulator and a negative regulator of poly(A) synthesis. We suggest a model in which these three factors and Ufd1p are part of a regulatory complex that exploits Pab1p to link cleavage and polyadenylation factors of CFIA and CFIB (cleavage factors IA and IB) to the polyadenylation factors of CPF (cleavage and polyadenylation factor).


Proceedings of the National Academy of Sciences of the United States of America | 2015

Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3

Bijoyita Roy; John D. Leszyk; David A. Mangus; Allan Jacobson

Significance Readthrough-promoting drugs cause amino acid insertion at premature termination codons (PTCs), and thus have broad potential as a therapeutic approach to inherited disorders attributable to nonsense mutations. Because the mechanism involved in the insertion of near-cognate tRNAs at nonsense codons is unknown, we have identified the yeast translation errors ensuing from nonsense suppression occurring either inherently or enhanced by drugs or mutations that compromise termination fidelity. Our analyses of the products of nonsense suppression provide insights into the rules that govern readthrough at PTCs and delineate specific nonstandard Watson–Crick codon/anticodon base pairings critical to this process. These results should enable predictions of the likelihood of obtaining functional full-length readthrough products, and thus better clinical outcomes, with therapeutic nonsense suppression. Premature termination codons (PTCs) in an mRNA ORF inactivate gene function by causing production of a truncated protein and destabilization of the mRNA. Readthrough of a PTC allows ribosomal A-site insertion of a near-cognate tRNA, leading to synthesis of a full-length protein from otherwise defective mRNA. To understand the mechanism of such nonsense suppression, we developed a yeast system that allows purification and sequence analysis of full-length readthrough products arising as a consequence of endogenous readthrough or the compromised termination fidelity attributable to the loss of Upf (up-frameshift) factors, defective release factors, or the presence of the aminoglycoside gentamicin. Unlike classical “wobble” models, our analyses showed that three of four possible near-cognate tRNAs could mispair at position 1 or 3 of nonsense codons and that, irrespective of whether readthrough is endogenous or induced, the same sets of amino acids are inserted. We identified the insertion of Gln, Tyr, and Lys at UAA and UAG, whereas Trp, Arg, and Cys were inserted at UGA, and the frequency of insertion of individual amino acids was distinct for specific nonsense codons and readthrough-inducing agents. Our analysis suggests that the use of genetic or chemical means to increase readthrough does not promote novel or alternative mispairing events; rather, readthrough effectors cause quantitative enhancement of endogenous mistranslation events. Knowledge of the amino acids incorporated during readthrough not only elucidates the decoding process but also may allow predictions of the functionality of readthrough protein products.


Genome Biology | 2003

Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression

David A. Mangus; Matthew Evans; Allan Jacobson


Biochemical Society Transactions | 2006

Aberrant termination triggers nonsense-mediated mRNA decay

Nadia Amrani; Shuyun Dong; Feng He; Robin Ganesan; Shubhendu Ghosh; Stephanie Kervestin; Chunfang Li; David A. Mangus; Phyllis Spatrick; Allan Jacobson

Collaboration


Dive into the David A. Mangus's collaboration.

Top Co-Authors

Avatar

Allan Jacobson

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Feng He

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Nadia Amrani

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Matthew Evans

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Robin Ganesan

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Shubhendu Ghosh

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Stephanie Kervestin

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Ambro van Hoof

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Ann Bin Shyu

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Bijoyita Roy

University of Tennessee

View shared research outputs
Researchain Logo
Decentralizing Knowledge