Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadia Amrani is active.

Publication


Featured researches published by Nadia Amrani.


Nature | 2004

A faux 3′-UTR promotes aberrant termination and triggers nonsense- mediated mRNA decay

Nadia Amrani; Robin Ganesan; Stephanie Kervestin; David A. Mangus; Shubhendu Ghosh; Allan Jacobson

Nonsense-mediated messenger RNA decay (NMD) is triggered by premature translation termination, but the features distinguishing premature from normal termination are unknown. One model for NMD suggests that decay-inducing factors bound to mRNAs during early processing events are routinely removed by elongating ribosomes but remain associated with mRNAs when termination is premature, triggering rapid turnover. Recent experiments challenge this notion and suggest a model that posits that mRNA decay is activated by the intrinsically aberrant nature of premature termination. Here we use a primer extension inhibition (toeprinting) assay to delineate ribosome positioning and find that premature translation termination in yeast extracts is indeed aberrant. Ribosomes encountering premature UAA or UGA codons in the CAN1 mRNA fail to release and, instead, migrate to upstream AUGs. This anomaly depends on prior nonsense codon recognition and is eliminated in extracts derived from cells lacking the principal NMD factor, Upf1p, or by flanking the nonsense codon with a normal 3′-untranslated region (UTR). Tethered poly(A)-binding protein (Pab1p), used as a mimic of a normal 3′-UTR, recruits the termination factor Sup35p (eRF3) and stabilizes nonsense-containing mRNAs. These findings indicate that efficient termination and mRNA stability are dependent on a properly configured 3′-UTR.


Nature Reviews Molecular Cell Biology | 2006

Early nonsense: mRNA decay solves a translational problem

Nadia Amrani; Matthew S. Sachs; Allan Jacobson

Gene expression is highly accurate and rarely generates defective proteins. Several mechanisms ensure this fidelity, including specialized surveillance pathways that rid the cell of mRNAs that are incompletely processed or that lack complete open reading frames. One such mechanism, nonsense-mediated mRNA decay, is triggered when ribosomes encounter a premature translation-termination — or nonsense — codon. New evidence indicates that the specialized factors that are recruited for this process not only promote rapid mRNA degradation, but are also required to resolvea poorly dissociable termination complex.


Molecular and Cellular Biology | 1998

Pbp1p, a Factor Interacting with Saccharomyces cerevisiae Poly(A)-Binding Protein, Regulates Polyadenylation

David A. Mangus; Nadia Amrani; Allan Jacobson

ABSTRACT The poly(A) tail of an mRNA is believed to influence the initiation of translation, and the rate at which the poly(A) tail is removed is thought to determine how fast an mRNA is degraded. One key factor associated with this 3′-end structure is the poly(A)-binding protein (Pab1p) encoded by the PAB1 gene inSaccharomyces cerevisiae. In an effort to learn more about the functional role of this protein, we used a two-hybrid screen to determine the factor(s) with which it interacts. We identified five genes encoding factors that specifically interact with the carboxy terminus of Pab1p. Of a total of 44 specific clones identified,PBP1 (for Pab1p-binding protein) was isolated 38 times. Of the putative interacting genes examined, PBP1 promoted the highest level of resistance to 3-aminotriazole (>100 mM) in constructs in which HIS3 was used as a reporter. We determined that a fraction of Pbp1p cosediments with polysomes in sucrose gradients and that its distribution is very similar to that of Pab1p. Disruption ofPBP1 showed that it is not essential for viability but can suppress the lethality associated with a PAB1 deletion. The suppression of pab1Δ by pbp1Δ appears to be different from that mediated by other pab1 suppressors, since disruption of PBP1 does not alter translation rates, affect accumulation of ribosomal subunits, change mRNA poly(A) tail lengths, or result in a defect in mRNA decay. Rather, Pbp1p appears to function in the nucleus to promote proper polyadenylation. In the absence of Pbp1p, 3′ termini of pre-mRNAs are properly cleaved but lack full-length poly(A) tails. These effects suggest that Pbp1p may act to repress the ability of Pab1p to negatively regulate polyadenylation.


RNA | 2010

Translational competence of ribosomes released from a premature termination codon is modulated by NMD factors

Shubhendu Ghosh; Robin Ganesan; Nadia Amrani; Allan Jacobson

In addition to their well-documented roles in the promotion of nonsense-mediated mRNA decay (NMD), yeast Upf proteins (Upf1, Upf2/Nmd2, and Upf3) also manifest translational regulatory functions, at least in vitro, including roles in premature translation termination and subsequent reinitiation. Here, we find that all upf Delta strains also fail to reinitiate translation after encountering a premature termination codon (PTC) in vivo, a result that led us to seek a unifying mechanism for all of these translation phenomena. Comparisons of the in vitro translational activities of wild-type (WT) and upf1 Delta extracts were utilized to test for a Upf1 role in post-termination ribosome reutilization. Relative to WT extracts, non-nucleased extracts lacking Upf1 had approximately twofold decreased activity for the translation of synthetic CAN1/LUC mRNA, a defect paralleled by fewer ribosomes per mRNA and reduced efficiency of the 60S joining step at initiation. These deficiencies could be complemented by purified FLAG-Upf1, or 60S subunits, and appeared to reflect diminished cycling of ribosomes from endogenous PTC-containing mRNAs to exogenously added synthetic mRNA in the same extracts. This hypothesis was tested, and supported, by experiments in which nucleased WT or upf1 Delta extracts were first challenged with high concentrations of synthetic mRNAs that were templates for either normal or premature translation termination and then assayed for their capacity to translate a normal mRNA. Our results indicate that Upf1 plays a key role in a mechanism coupling termination and ribosome release at a PTC to subsequent ribosome reutilization for another round of translation initiation.


Methods in Enzymology | 2007

The use of fungal in vitro systems for studying translational regulation.

Cheng Wu; Nadia Amrani; Allan Jacobson; Matthew S. Sachs

The use of cell-free systems enables biochemical determination of factors and mechanisms contributing to translational processes. The preparation and use of cell-free translation systems from the fungi Saccharomyces cerevisiae and Neurospora crassa are described. Examples provided illustrate the use of these systems, in conjunction with luciferase assays, [(35)S]Met incorporation, and primer-extension inhibition (toeprint) analyses, to assess the translational effects of upstream open reading frames and premature termination codons.


Cell | 2017

A Broad-Spectrum Inhibitor of CRISPR-Cas9

Lucas B. Harrington; Kevin W. Doxzen; Enbo Ma; Jun-Jie Liu; Gavin J. Knott; Alireza Edraki; Bianca Garcia; Nadia Amrani; Janice S. Chen; Joshua C. Cofsky; Philip J. Kranzusch; Erik J. Sontheimer; Alan R. Davidson; Karen L. Maxwell; Jennifer A. Doudna

CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9.


RNA | 2013

Yeast Upf1 CH domain interacts with Rps26 of the 40S ribosomal subunit.

Ei Ei Min; Bijoyita Roy; Nadia Amrani; Feng He; Allan Jacobson

The central nonsense-mediated mRNA decay (NMD) regulator, Upf1, selectively targets nonsense-containing mRNAs for rapid degradation. In yeast, Upf1 preferentially associates with mRNAs that are NMD substrates, but the mechanism of its selective retention on these mRNAs has yet to be elucidated. Previously, we demonstrated that Upf1 associates with 40S ribosomal subunits. Here, we define more precisely the nature of this association using conventional and affinity-based purification of ribosomal subunits, and a two-hybrid screen to identify Upf1-interacting ribosomal proteins. Upf1 coimmunoprecipitates specifically with epitope-tagged 40S ribosomal subunits, and Upf1 association with high-salt washed or puromycin-released 40S subunits was found to occur without simultaneous eRF1, eRF3, Upf2, or Upf3 association. Two-hybrid analyses and in vitro binding assays identified a specific interaction between Upf1 and Rps26. Using mutations in domains of UPF1 known to be crucial for its function, we found that Upf1:40S association is modulated by ATP, and Upf1:Rps26 interaction is dependent on the N-terminal Upf1 CH domain. The specific association of Upf1 with the 40S subunit is consistent with the notion that this RNA helicase not only triggers rapid decay of nonsense-containing mRNAs, but may also have an important role in dissociation of the premature termination complex.


Methods in Enzymology | 2008

Chapter 6. Qualitative and quantitative assessment of the activity of the yeast nonsense-mediated mRNA decay pathway.

Feng He; Nadia Amrani; Marcus J.O. Johansson; Allan Jacobson

The yeast Saccharomyces cerevisiae provides an ideal model system for elucidation of the molecular mechanisms that regulate the nonsense-mediated mRNA decay (NMD) pathway. This chapter describes an array of molecular biological, genetic, and biochemical tools that facilitate the characterization of transcripts that comprise NMD substrates and provide insights into the roles of the upf/nmd proteins in mRNA decay and translation termination. Examples illustrate the use of these methods in wild-type and NMD-deficient cells to monitor the abundance, structure, and half-lives of nonsense-containing mRNAs, the read through of premature termination codons by the ribosome, and the positioning of ribosomes at or near normal and premature termination codons.


Infection, Genetics and Evolution | 2016

Molecular epidemiology of canine parvovirus in Morocco.

Nadia Amrani; Costantina Desario; Ahlam Kadiri; Alessandra Cavalli; Jaouad Berrada; Khalil Zro; Ghizlane Sebbar; Maria Loredana Colaianni; Antonio Parisi; Gabriella Elia; Canio Buonavoglia; Jamal Malik; Nicola Decaro

Since it first emergence in the mid-1970s, canine parvovirus 2 (CPV-2) has evolved giving rise to new antigenic variants termed CPV-2a, CPV-2b and CPV-2c, which have completely replaced the original strain and had been variously distributed worldwide. In Africa limited data are available on epidemiological prevalence of these new types. Hence, the aim of the present study was to determine circulating variants in Morocco. Through TaqMan-based real-time PCR assay, 91 samples, collected from symptomatic dogs originating from various cities between 2011 and 2015, were diagnosed. Positive specimens were characterised by means of minor groove binder (MGB) probe PCR. The results showed that all samples but one (98.9%) were CPV positive, of which 1 (1.1%) was characterised as CPV-2a, 43 (47.7%) as CPV-2b and 39 (43.3%) as CPV-2c. Interestingly, a co-infection with CPV-2b and CPV-2c was detected in 4 (4.4%) samples and 3 (3.3%) samples were not characterised. Sequencing of the full VP2 gene revealed these 3 uncharacterised strains as CPV-2c, displaying a change G4068A responsible for the replacement of aspartic acid with asparagine at residue 427, impacting the MGB probe binding. In this work we provide a better understanding of the current status of prevailing CPV strains in northern Africa.


bioRxiv | 2018

NmeCas9 is an intrinsically high-fidelity genome editing platform

Nadia Amrani; Xin D. Gao; Pengpeng Liu; Alireza Edraki; Aamir Mir; Raed Ibraheim; Ankit Gupta; Kanae E. Sasaki; Tong Wu; Thomas G. Fazzio; Lihua Julie Zhu; Scot A. Wolfe; Erik J. Sontheimer

Background The development of CRISPR genome editing has transformed biomedical research. Most applications reported thus far rely upon the Cas9 protein from Streptococcus pyogenes SF370 (SpyCas9). With many RNA guides, wild-type SpyCas9 can induce significant levels of unintended mutations at near-cognate sites, necessitating substantial efforts toward the development of strategies to minimize off-target activity. Although the genome-editing potential of thousands of other Cas9 orthologs remains largely untapped, it is not known how many will require similarly extensive engineering to achieve single-site accuracy within large (e.g. mammalian) genomes. In addition to its off-targeting propensity, SpyCas9 is encoded by a relatively large (~4.2 kb) open reading frame, limiting its utility in applications that require size-restricted delivery strategies such as adeno-associated virus vectors. In contrast, some genome-editing-validated Cas9 orthologs (e.g. from Staphylococcus aureus, Campylobacter jejuni, Geobacillus stearothermophilus and Neisseria meningitidis) are considerably smaller and therefore better suited for viral delivery. Results Here we show that wild-type NmeCas9, when programmed with guide sequences of natural length (24 nucleotides), exhibits a nearly complete absence of unintended editing in human cells, even when targeting sites that are prone to off-target activity with wildtype SpyCas9. We also validate at least six variant protospacer adjacent motifs (PAMs), in addition to the preferred consensus PAM (5’-N4GATT-3’), for NmeCas9 genome editing in human cells. Conclusions Our results show that NmeCas9 is a naturally high-fidelity genome editing enzyme and suggest that additional Cas9 orthologs may prove to exhibit similarly high accuracy, even without extensive engineering.

Collaboration


Dive into the Nadia Amrani's collaboration.

Top Co-Authors

Avatar

Allan Jacobson

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Erik J. Sontheimer

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Alireza Edraki

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Robin Ganesan

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Aamir Mir

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

David A. Mangus

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Feng He

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raed Ibraheim

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Shubhendu Ghosh

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge