Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Meekins is active.

Publication


Featured researches published by David A. Meekins.


The Plant Cell | 2011

The phosphoglucan phosphatase like sex Four2 dephosphorylates starch at the C3-position in Arabidopsis.

Diana Santelia; Oliver Kötting; David Seung; Mario Schubert; Matthias Thalmann; Sylvain Bischof; David A. Meekins; Andy Lutz; Nicola J. Patron; Matthew S. Gentry; Frédéric H.-T. Allain; Samuel C. Zeeman

This work identifies an enzyme, named Like Sex Four2 (LSF2), that hydrolyzes the phosphate group from the C3-position of glucosyl residues of starch. The lsf2 mutation in Arabidopsis thaliana leads to modified starch with elevated levels of C3-bound phosphate. Starch contains phosphate covalently bound to the C6-position (70 to 80% of total bound phosphate) and the C3-position (20 to 30%) of the glucosyl residues of the amylopectin fraction. In plants, the transient phosphorylation of starch renders the granule surface more accessible to glucan hydrolyzing enzymes and is required for proper starch degradation. Phosphate also confers desired properties to starch-derived pastes for industrial applications. In Arabidopsis thaliana, the removal of phosphate by the glucan phosphatase Starch Excess4 (SEX4) is essential for starch breakdown. We identified a homolog of SEX4, LSF2 (Like Sex Four2), as a novel enzyme involved in starch metabolism in Arabidopsis chloroplasts. Unlike SEX4, LSF2 does not have a carbohydrate binding module. Nevertheless, it binds to starch and specifically hydrolyzes phosphate from the C3-position. As a consequence, lsf2 mutant starch has elevated levels of C3-bound phosphate. SEX4 can release phosphate from both the C6- and the C3-positions, resulting in partial functional overlap with LSF2. However, compared with sex4 single mutants, the lsf2 sex4 double mutants have a more severe starch-excess phenotype, impaired growth, and a further change in the proportion of C3- and C6-bound phosphate. These findings significantly advance our understanding of the metabolism of phosphate in starch and provide innovative options for tailoring novel starches with improved functionality for industry.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structural basis for the glucan phosphatase activity of Starch Excess4

Craig W. Vander Kooi; Adam Taylor; Rachel M. Pace; David A. Meekins; Hou-Fu Guo; Youngjun Kim; Matthew S. Gentry

Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Phosphoglucan-bound structure of starch phosphatase Starch Excess4 reveals the mechanism for C6 specificity

David A. Meekins; Madushi Raththagala; Satrio Husodo; Cory J. White; Hou-Fu Guo; Oliver Kötting; Craig W. Vander Kooi; Matthew S. Gentry

Significance Starch is the main carbohydrate storage molecule in plants and is ubiquitous in human life. Reversible starch phosphorylation is the key regulatory event in starch catabolism. Starch Excess4 (SEX4) preferentially dephosphorylates the C6 position of starch glucose and its absence results in a dramatic accumulation of leaf starch. We present the structure of SEX4 bound to a phosphoglucan product, define its mechanism of specific activity, and reverse its specificity to the C3 position via mutagenesis. The ability to control starch phosphorylation has direct applications in agriculture and industrial uses of starch. These insights into SEX4 structure and function provide a foundation to control reversible phosphorylation and produce designer starches with tailored physiochemical properties and potentially widespread impacts. Plants use the insoluble polyglucan starch as their primary glucose storage molecule. Reversible phosphorylation, at the C6 and C3 positions of glucose moieties, is the only known natural modification of starch and is the key regulatory mechanism controlling its diurnal breakdown in plant leaves. The glucan phosphatase Starch Excess4 (SEX4) is a position-specific starch phosphatase that is essential for reversible starch phosphorylation; its absence leads to a dramatic accumulation of starch in Arabidopsis, but the basis for its function is unknown. Here we describe the crystal structure of SEX4 bound to maltoheptaose and phosphate to a resolution of 1.65 Å. SEX4 binds maltoheptaose via a continuous binding pocket and active site that spans both the carbohydrate-binding module (CBM) and the dual-specificity phosphatase (DSP) domain. This extended interface is composed of aromatic and hydrophilic residues that form a specific glucan-interacting platform. SEX4 contains a uniquely adapted DSP active site that accommodates a glucan polymer and is responsible for positioning maltoheptaose in a C6-specific orientation. We identified two DSP domain residues that are responsible for SEX4 site-specific activity and, using these insights, we engineered a SEX4 double mutant that completely reversed specificity from the C6 to the C3 position. Our data demonstrate that the two domains act in consort, with the CBM primarily responsible for engaging glucan chains, whereas the DSP integrates them in the catalytic site for position-specific dephosphorylation. These data provide important insights into the structural basis of glucan phosphatase site-specific activity and open new avenues for their biotechnological utilization.


Molecular Cell | 2015

Structural Mechanism of Laforin Function in Glycogen Dephosphorylation and Lafora Disease

Madushi Raththagala; M. Kathryn Brewer; Matthew W. Parker; Brian K. Wong; Simon Hsu; Travis M. Bridges; Bradley C. Paasch; Lance M. Hellman; Satrio Husodo; David A. Meekins; Adam O. Taylor; Benjamin Turner; Kyle D. Auger; Vikas V. Dukhande; Srinivas Chakravarthy; Pascual Sanz; Virgil L. Woods; Sheng Li; Craig W. Vander Kooi; Matthew S. Gentry

Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease.


The Plant Cell | 2013

Structure of the Arabidopsis Glucan Phosphatase LIKE SEX FOUR2 Reveals a Unique Mechanism for Starch Dephosphorylation

David A. Meekins; Hou-Fu Guo; Satrio Husodo; Bradley C. Paasch; Travis M. Bridges; Diana Santelia; Oliver Kötting; Craig W. Vander Kooi; Matthew S. Gentry

This study reports the structure of the Arabidopsis glucan phosphatase LIKE SEX FOUR2 (LSF2) both with and without bound phospho-glucan product. These results uncover previously unknown binding sites and define the unique structural mechanism of LSF2 catalysis, substrate specificity, and interaction with starch granules. Starch is a water-insoluble, Glc-based biopolymer that is used for energy storage and is synthesized and degraded in a diurnal manner in plant leaves. Reversible phosphorylation is the only known natural starch modification and is required for starch degradation in planta. Critical to starch energy release is the activity of glucan phosphatases; however, the structural basis of dephosphorylation by glucan phosphatases is unknown. Here, we describe the structure of the Arabidopsis thaliana starch glucan phosphatase LIKE SEX FOUR2 (LSF2) both with and without phospho-glucan product bound at 2.3Å and 1.65Å, respectively. LSF2 binds maltohexaose-phosphate using an aromatic channel within an extended phosphatase active site and positions maltohexaose in a C3-specific orientation, which we show is critical for the specific glucan phosphatase activity of LSF2 toward native Arabidopsis starch. However, unlike other starch binding enzymes, LSF2 does not possess a carbohydrate binding module domain. Instead we identify two additional glucan binding sites located within the core LSF2 phosphatase domain. This structure is the first of a glucan-bound glucan phosphatase and provides new insights into the molecular basis of this agriculturally and industrially relevant enzyme family as well as the unique mechanism of LSF2 catalysis, substrate specificity, and interaction with starch granules.


Seminars in Cell & Developmental Biology | 2017

Serpins in Arthropod Biology.

David A. Meekins; Michael R. Kanost; Kristin Michel

Serpins are the largest known family of serine proteinase inhibitors and perform a variety of physiological functions in arthropods. Herein, we review the field of serpins in arthropod biology, providing an overview of current knowledge and topics of interest. Serpins regulate insect innate immunity via inhibition of serine proteinase cascades that initiate immune responses such as melanization and antimicrobial peptide production. In addition, several serpins with anti-pathogen activity are expressed as acute-phase serpins in insects upon infection. Parasitoid wasps can downregulate host serpin expression to modulate the host immune system. In addition, examples of serpin activity in development and reproduction in Drosophila have also been discovered. Serpins also function in host-pathogen interactions beyond immunity as constituents of venom in parasitoid wasps and saliva of blood-feeding ticks and mosquitoes. These serpins have distinct effects on immunosuppression and anticoagulation and are of interest for vaccine development. Lastly, the known structures of arthropod serpins are discussed, which represent the serpin inhibitory mechanism and provide a detailed overview of the process.


Cellular and Molecular Life Sciences | 2016

Unique carbohydrate binding platforms employed by the glucan phosphatases

Shane Emanuelle; M. Kathryn Brewer; David A. Meekins; Matthew S. Gentry

Glucan phosphatases are a family of enzymes that are functionally conserved at the enzymatic level in animals and plants. These enzymes bind and dephosphorylate glycogen in animals and starch in plants. While the enzymatic function is conserved, the glucan phosphatases employ distinct mechanisms to bind and dephosphorylate glycogen or starch. The founding member of the family is a bimodular human protein called laforin that is comprised of a carbohydrate binding module 20 (CBM20) followed by a dual specificity phosphatase domain. Plants contain two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a chloroplast targeting peptide, dual specificity phosphatase (DSP) domain, a CBM45, and a carboxy-terminal motif. LSF2 is comprised of simply a chloroplast targeting peptide, DSP domain, and carboxy-terminal motif. SEX4 employs an integrated DSP-CBM glucan-binding platform to engage and dephosphorylate starch. LSF2 lacks a CBM and instead utilizes two surface binding sites to bind and dephosphorylate starch. Laforin is a dimeric protein in solution and it utilizes a tetramodular architecture and cooperativity to bind and dephosphorylate glycogen. This chapter describes the biological role of glucan phosphatases in glycogen and starch metabolism and compares and contrasts their ability to bind and dephosphorylate glucans.Glucan phosphatases are a family of enzymes that are functionally conserved at the enzymatic level in animals and plants. These enzymes bind and dephosphorylate glycogen in animals and starch in plants. While the enzymatic function is conserved, the glucan phosphatases employ distinct mechanisms to bind and dephosphorylate glycogen or starch. The founding member of the family is a bimodular human protein called laforin that is comprised of a carbohydrate binding module 20 (CBM20) followed by a dual specificity phosphatase domain. Plants contain two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a chloroplast targeting peptide, dual specificity phosphatase (DSP) domain, a CBM45, and a carboxy-terminal motif. LSF2 is comprised of simply a chloroplast targeting peptide, DSP domain, and carboxy-terminal motif. SEX4 employs an integrated DSP-CBM glucan-binding platform to engage and dephosphorylate starch. LSF2 lacks a CBM and instead utilizes two surface binding sites to bind and dephosphorylate starch. Laforin is a dimeric protein in solution and it utilizes a tetramodular architecture and cooperativity to bind and dephosphorylate glycogen. This chapter describes the biological role of glucan phosphatases in glycogen and starch metabolism and compares and contrasts their ability to bind and dephosphorylate glucans.


Journal of Biological Chemistry | 2015

Mechanistic Insights into Glucan Phosphatase Activity against Polyglucan Substrates

David A. Meekins; Madushi Raththagala; Kyle D. Auger; Benjamin Turner; Diana Santelia; Oliver Kötting; Matthew S. Gentry; Craig W. Vander Kooi

Background: Glucan phosphatases are essential for glycogen and starch metabolism. Results: Comparative enzymology of glucan phosphatases defines the mechanism for specific activity versus physiological glucan substrates. Conclusion: Glucan phosphatases possess a common active site motif but unique specific activities determined by phosphatase and carbohydrate binding domains. Significance: Defining glucan dephosphorylation is essential for understanding normal plant and animal physiology and human disease. Glucan phosphatases are central to the regulation of starch and glycogen metabolism. Plants contain two known glucan phosphatases, Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), which dephosphorylate starch. Starch is water-insoluble and reversible phosphorylation solubilizes its outer surface allowing processive degradation. Vertebrates contain a single known glucan phosphatase, laforin, that dephosphorylates glycogen. In the absence of laforin, water-soluble glycogen becomes insoluble, leading to the neurodegenerative disorder Lafora Disease. Because of their essential role in starch and glycogen metabolism glucan phosphatases are of significant interest, yet a comparative analysis of their activities against diverse glucan substrates has not been established. We identify active site residues required for specific glucan dephosphorylation, defining a glucan phosphatase signature motif (CζAGΨGR) in the active site loop. We further explore the basis for phosphate position-specific activity of these enzymes and determine that their diverse phosphate position-specific activity is governed by the phosphatase domain. In addition, we find key differences in glucan phosphatase activity toward soluble and insoluble polyglucan substrates, resulting from the participation of ancillary glucan-binding domains. Together, these data provide fundamental insights into the specific activity of glucan phosphatases against diverse polyglucan substrates.


FEBS Letters | 2016

Plant α-glucan phosphatases SEX4 and LSF2 display different affinity for amylopectin and amylose

Casper Wilkens; Kyle D. Auger; Nolan T. Anderson; David A. Meekins; Madushi Raththagala; Maher Abou Hachem; Christina M. Payne; Matthew S. Gentry; Birte Svensson

The plant glucan phosphatases Starch EXcess 4 (SEX4) and Like Sex Four2 (LSF2) apply different starch binding mechanisms. SEX4 contains a carbohydrate binding module, and LSF2 has two surface binding sites (SBSs). We determined KDapp for amylopectin and amylose, and KD for β‐cyclodextrin and validated binding site mutants deploying affinity gel electrophoresis (AGE) and surface plasmon resonance. SEX4 has a higher affinity for amylopectin; LSF2 prefers amylose and β‐cyclodextrin. SEX4 has 50‐fold lower KDapp for amylopectin compared to LSF2. Molecular dynamics simulations and AGE data both support long‐distance mutual effects of binding at SBSs and the active site in LSF2.


Journal of Biological Chemistry | 2015

Structural and Inhibitory Effects of Hinge Loop Mutagenesis in Serpin-2 from the Malaria Vector Anopheles gambiae

Xin Zhang; David A. Meekins; Chunju An; Michal Zolkiewski; Kevin P. Battaile; Michael R. Kanost; Scott Lovell; Kristin Michel

Background: Serpin-2 (SRPN2) is a key regulator of mosquito immunity and contains an inserted hinge region linked to activation in other serpins. Results: Structure/function analyses of hinge mutations refute a hypothesized activation mechanism in SRPN2. Conclusion: SRPN2 hinge insertion provides a thermodynamically stable conformation without restricting inhibitory capability. Significance: To effectively utilize SRPN2 for vector control, its mode of action must be understood. Serpin-2 (SRPN2) is a key negative regulator of the melanization response in the malaria vector Anopheles gambiae. SRPN2 irreversibly inhibits clip domain serine proteinase 9 (CLIPB9), which functions in a serine proteinase cascade culminating in the activation of prophenoloxidase and melanization. Silencing of SRPN2 in A. gambiae results in spontaneous melanization and decreased life span and is therefore a promising target for vector control. The previously determined structure of SRPN2 revealed a partial insertion of the hinge region of the reactive center loop (RCL) into β sheet A. This partial hinge insertion participates in heparin-linked activation in other serpins, notably antithrombin III. SRPN2 does not contain a heparin binding site, and any possible mechanistic function of the hinge insertion was previously unknown. To investigate the function of the SRPN2 hinge insertion, we developed three SRPN2 variants in which the hinge regions are either constitutively expelled or inserted and analyzed their structure, thermostability, and inhibitory activity. We determined that constitutive hinge expulsion resulted in a 2.7-fold increase in the rate of CLIPB9Xa inhibition, which is significantly lower than previous observations of allosteric serpin activation. Furthermore, we determined that stable insertion of the hinge region did not appreciably decrease the accessibility of the RCL to CLIPB9. Together, these results indicate that the partial hinge insertion in SRPN2 does not participate in the allosteric activation observed in other serpins and instead represents a molecular trade-off between RCL accessibility and efficient formation of an inhibitory complex with the cognate proteinase.

Collaboration


Dive into the David A. Meekins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hou-Fu Guo

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge